摘要——基于多层电阻式随机存取存储器 (RRAM) 的突触阵列可以实现矢量矩阵乘法的并行计算,从而加速机器学习推理;然而,由于模拟电流沿列相加,因此单元的任何电导漂移都可能导致推理精度下降。在本文中,在基于 2 位 HfO 2 RRAM 阵列的测试车辆上统计测量了读取干扰引起的电导漂移特性。通过垂直和横向细丝生长机制对四种状态的漂移行为进行了经验建模。此外,提出并测试了一种双极读取方案,以增强对读取干扰的恢复能力。建模的读取干扰和提出的补偿方案被纳入类似 VGG 的卷积神经网络中,用于 CIFAR-10 数据集推理。
解决 QKD 中符号同步的一个直观方法是使用成对光纤通过不同信道传输参考信号和量子数据信号。然而,温度会导致成对光纤之间产生延迟,从而导致同步精度下降 [Tanaka et al. 2008]。时分复用 (TDM) 方案克服了这个问题,其中同步脉冲从量子脉冲中滞后传输。然而,TDM 方案带来了其他问题,例如比特率限制,因为这些技术要求量子信号和参考信号之间有足够长的时间间隔 [Tanaka et al. 2008]。最近,已经提出了不同的 QKD 时钟恢复算法,避免使用额外的经典参考信号。在 [Pljonkin and Rumyantsev 2016] 中,提出了一种同步算法,其中时间帧被划分为更小的时间窗口,同步时间为 788 。 6 ms,同步失败概率为0.01%。在[Rumyantsev and Rudinskiy 2017]中,作者提出了一种不包括时间帧划分的算法,提供更快的同步时间3.216 ms,错误概率为0.0043%。然而,后者只能应用于站间距离不超过几十公里的QKD系统,而前者可以应用于数百公里的QKD系统。另一方面,
脑机接口正在利用细胞外记录中的神经尖峰波形或尖峰时间实现重要的新功能 [1],[2]。尖峰检测是从记录中提取神经尖峰的重要步骤。它不仅可以提取用于神经活动解码的信息,还可以将数据带宽减少数百甚至数千倍,从而实现无线传输并实现完全植入神经接口而无需经皮导线突破皮肤。尖峰检测性能对于保存神经信息和避免解码精度下降至关重要。阈值是尖峰检测的最常用方法,超过阈值的值被视为尖峰。面对不断变化的大脑环境,自适应且稳健的阈值至关重要。文献中提出了许多用于定义阈值的算法。一种方法是使用计算算法 [3],[4],例如短时傅立叶变换、小波变换和模板匹配。还有一些算法方法,例如反馈控制阈值 [5]。最常见的方法是根据信号统计数据设置阈值。噪声统计数据被广泛用于设置阈值。还提出了一种硬件高效估计方法,使用乘数将平均值/中位数/标准差/均方根值设置为阈值 [6]。其他人选择使用稳健统计估计来设置阈值 [7]。将阈值设置为 T = αN ,其中 N 是噪声统计数据,α 是用户定义的参数,这是设置阈值的常用方法 [8]。由于其简单性,这种方法在植入体实施中尤其受欢迎 [9]。然而,这种算法的自适应性
摘要 随着人们对高性能陶瓷氮化铝 (AlN) 的兴趣迅速增加,许多研究人员研究了对其进行加工的可能性。由于 AlN 被归类为难切削材料,使用辅助电极的电火花加工 (EDM) 工艺正在成为一种有效的加工方法。煤油作为介电流体,在工件表面形成连续的导电碳层以诱导和维持放电方面起着重要作用。大多数以前的方法使用管状电极将介电流体稳定地输送通过其中心孔。然而,在微细电火花加工的情况下,非常小的电极直径使得难以在电极上制造通孔,并且非常窄的间隙会阻止介电流体的流动。为了克服微细电火花加工中介质液流动问题,本研究介绍了两种促进流动的方法:一是采用D形固体电极获得较宽的非对称流道,二是采用O形固体电极加石墨粉混合煤油(GPMK)在相对较宽的放电间隙下流动。流动模拟结果表明两种方法均能促进煤油流动,实验结果也显示出类似的结果。当采用D形截面时,材料去除率增加,但刀具磨损增加。与传统方法相比,对于GPMK,金属去除率提高了64%,相对磨损率降低了73%。通过电压调度,在不牺牲可加工性的前提下,解决了采用O形固体电极GPMK配置进行深孔钻削时出现的精度下降问题。
基于注意力的变压器已成为实现自然语言处理和计算机视觉等任务的强大范式。但是,与卷积网络相比,变压器通常会显示更高的计算成本和参数计数。这种效率低下会阻碍将变压器部署到资源约束设备(例如边缘设备)上。结构化的修剪技术提出了一个有前途的方向,可以压缩变形金刚的边缘计算方案。本文研究了修剪技术以在视觉变压器中诱导结构化的稀疏性,从而减少了计算要求,同时最大程度地减少准确性降解。目标是为有效的视觉变压器推理开发方法。结构化的修剪在训练时间时通过解决一个优化问题来学习对单个网络组合的重要性得分,该问题试图最大程度地提高任务性能,同时最大程度地减少模型中参数的数量。随后,重要性得分转化为二进制掩码,这些面具修剪不重要的结构,例如特定线性层输出二 - 段或整个注意力头。为了促进诱发稀疏模式的规律性,提出了各种面具分享策略,以使相关构件元素的修剪决策对夫妇进行修剪决策。规律性至关重要,因为由于特定的变压器的特定连接模式,完全独立性排除了某些蒙版组件的去除,从而导致模型实际部署在硬件上时,导致压缩率较低。经验结果表明,在图像分类任务中,组件完全独立的掩蔽优于平衡准确性和稀疏性的共享策略。仍然是实验表明,通过共享和独立面具的混合,提出的修剪方案成功地压缩了视觉变压器的90%,精度仅为4%或70%的压缩率,精度下降小于1%。