脑机接口正在利用细胞外记录中的神经尖峰波形或尖峰时间实现重要的新功能 [1],[2]。尖峰检测是从记录中提取神经尖峰的重要步骤。它不仅可以提取用于神经活动解码的信息,还可以将数据带宽减少数百甚至数千倍,从而实现无线传输并实现完全植入神经接口而无需经皮导线突破皮肤。尖峰检测性能对于保存神经信息和避免解码精度下降至关重要。阈值是尖峰检测的最常用方法,超过阈值的值被视为尖峰。面对不断变化的大脑环境,自适应且稳健的阈值至关重要。文献中提出了许多用于定义阈值的算法。一种方法是使用计算算法 [3],[4],例如短时傅立叶变换、小波变换和模板匹配。还有一些算法方法,例如反馈控制阈值 [5]。最常见的方法是根据信号统计数据设置阈值。噪声统计数据被广泛用于设置阈值。还提出了一种硬件高效估计方法,使用乘数将平均值/中位数/标准差/均方根值设置为阈值 [6]。其他人选择使用稳健统计估计来设置阈值 [7]。将阈值设置为 T = αN ,其中 N 是噪声统计数据,α 是用户定义的参数,这是设置阈值的常用方法 [8]。由于其简单性,这种方法在植入体实施中尤其受欢迎 [9]。然而,这种算法的自适应性
主要关键词