我们到了吗?经过大约二十年的和谐发展投资,这是定位、导航和授时 (PNT) 应用的“小技术”的潜在用户一次又一次不耐烦地提出的一个问题。显然,多年来已经取得了一些重大进展,我们看到该技术在不断增长的消费电子市场中占有一席之地,该市场充满了由惯性和计时微技术支持的交互式产品。这些产品包括用于游戏应用的加速度计、用于汽车安全的陀螺仪和用于时钟的谐振器 - 仅举几例。然而,问题仍然存在:该技术是否真的达到了我们所认为的精确导航和授时水平,即它是否能够在整个任务期间(从几分钟到几小时到几天)实现至少 10 米的位置精度和 1 纳秒的时间精度?
摘要在精确导航方面的最新进展已广泛利用全球导航卫星系统(GNSS)和惯性导航系统(INS)的集成,尤其是在智能车辆的领域。然而,这种导航系统的功效被非光(NLOS)信号的反射和多径中断所损害。基于积极的感知传感器以其精确的3D测量而闻名的基于主动感知的传感器的光检测和范围(LIDAR)的探测器在增强导航系统方面已经变得越来越普遍。尽管如此,与GNSS/INS系统的激光雷达进气量同化列出了重大挑战。应对这些挑战,这项研究引入了两相传感器融合(TPSF)方法,该方法通过双阶段传感器融合过程协同结合了GNSS定位,激光镜和IMU预融合。初始阶段采用扩展的Kalman滤波器(EKF)与IMU机械化合并GNSS解决方案,从而促进了IMU偏见和系统初始化的估计。随后,第二阶段将扫描到映射激光雷达的进程与IMU机械化相结合,以支持连续的LiDAR因子估计。然后将因子图优化(FGO)用于liDar因子,IMU预融合和GNSS解决方案的全面融合。通过对城市化开源数据集的苛刻轨迹进行严格的测试来证实所提出的方法的功效,与最先进的算法相比,该系统表明性能的增强,可实现1.269米的翻译标准偏差(STD)。
• 惯性测量装置和制导系统可为商业和军事应用提供精确导航。如需了解更多信息,请访问我们的霍尼韦尔航空航天网站。霍尼韦尔设计和制造高性能、行业领先的惯性测量装置 (IMU),几乎每架飞机都使用它们来导航它们到达预定目的地。
自 1978 年推出以来,美国全球定位系统 (GPS) 对军事能力产生了革命性影响。它使战场上的精确导航和机动成为可能,使精确制导武器得以发展,并提供了前所未有的协调和同步分布式部队的能力。对全球导航卫星系统 (GNSS) 的这种依赖已经延伸到民用和商业领域。
电子设备是地面、海上、空中和太空中所有现代武器系统的核心。在雷达系统的发展过程中,它们最初只具备一些简单但非常有用的功能,例如提供远程物体测距和无线电定位,而雷达技术的不断进步增加了更多功能,例如精确导航、瞄准、制导、测绘、成像、目标识别、目标识别和分类,以及更多即将出现的功能。
摘要 提出了一种与任务阶段相关的直升机恶劣天气飞行显示和控制概念,该概念提供了规划和执行前往未知事故地点的救援任务以及在密闭区域着陆的所有能力。显示和控制概念定义的基础是特定的救援任务轨迹,确保高水平的安全性和避障能力。为此,开发了一种系统概念,允许直升机在受控空域飞行并进行精确导航。该系统还包括避障和数据链路组件。这里描述的控制和显示概念与特定的任务阶段有关。所述飞行测试表明该概念被广泛接受,并且控制和显示概念具有实际意义。
波罗的海海图基准 2000 (BSCD2000) 是用于波罗的海水文测量、水文工程、航海图、航海出版物和水位信息的大地测量参考系统。它基于欧洲垂直参考系统 (EVRS) 和欧洲地面参考系统 (ETRS89) 通用的大地测量标准。特别是,BSCD2000 的水文零点符合阿姆斯特丹标准 (NAP)。 BSCD2000 即将被波罗的海沿岸所有国家采用作为共同的海图参考水平。它与大多数国家陆地上使用的高度测量方法相对应。 BSCD2000 将促进有效利用 GPS、GLONASS 和伽利略等 GNSS 方法进行未来精确导航和水文调查。
图 7 测斜仪 1.10 全球定位系统 应用全球定位系统 (GPS) 进行现场精确导航。它使用卫星信号进行导航。GPS 是一种易于管理、重量轻、防水(和浮动)的仪器,具有清晰易读的 LCD 屏幕。这些设备基于导航原理工作。使用多达 12 颗卫星进行导航,启用 WAAS(广域增强系统 = 提供 GPS 信号校正的卫星和地面站系统),可存储多达 500 个地标和 50 条路线。这些设备具有内置数据库,显示城镇的位置,并具有大型用户友好的控制按钮和菜单控制软件。它们的定位精度<15 米。应用 WAAS 后,定位精度可提高至 3 米以内。