随着世界越来越多的城市化,对计划者和政策制定者来说,了解城市扩张的模式和潜在的驱动力至关重要。这项研究研究了德克萨斯三角大型大型城市扩张的时空模式,并探索了扩张背后的驱动因素。该研究使用了来自多个来源的数据,包括2001 - 2016年国家土地覆盖数据库(NLCD)的不透水数据,得克萨斯州交通运输部(TXDOT)的运输数据以及美国人口普查局的辅助社会人口统计数据。我们进行了空间群集分析和混合效应回归分析。结果表明:(1)在2001年至2016年之间得克萨斯州三角的城市扩张显示出趋势下降,而新近城市化的土地中有95%在大都市地区,尤其是在中央城市的外围。 (2)与都会区域的聚集形式相比,非大都市地区的城市扩张表现出零星的模式; (3)德克萨斯三角形的扩展过程表现出增强的紧凑性和强度的模式; (4)人口和经济增长在推动德克萨斯三角城市扩张方面发挥了明确的作用,而高速公路密度也很重要。这些结果表明,大型范围内的新兴趋势与得克萨斯州城市增长历史上已知的庞大发展课程偏离。不断变化的趋势可以归因于得克萨斯州三角的几个主播城市和大都市规划机构采取的亲耐用性倡议。
基于电源材料的制冷系统被认为是当前基于蒸气压缩设备的潜在替代方案。这些系统提供更接近Carnot限制的晶状体,同时还与微型化,紧凑性和集成到电子设备和可穿戴设备中。已经提出了几种原型,主要依靠机械和流体运动进行传热,这阻止了这些系统达到更高的操作频率,良好的热接触和低损失。一动不动的电源固态设备已经概念化了,但是它们的相对复杂性已阻碍了原型。在这项工作中,我们研究了依靠热电开关来控制热流的固态电局冷却器的性能。我们的设备操作模式通过通过热开关被动吸收热量来最大程度地减少能源消耗。在稳态热传播模型之后,评估了一组广泛的参数,覆盖运行温度,材料特性,几何特征,操作频率和材料极化损失,评估了一组广泛的参数,评估了施加的电流,吸收的热量,功耗和性能。我们估计COP高于1的COP,最大温度(对于不同的材料特性,几何因素或EC损失)和绝热温度的变化比施加的温度跨度高1 k。较高的温度跨度在6至10 K的率COP之间的0.1阶段,导致功耗显着增加。这些结果旨在在选择材料,温度和几何形状方面指导对这些固态设备的研究。
背景:鞭毛藻是水生生物的人,在全球海洋中特别广泛。有些人负责有毒的花朵,而另一些人生活在共生关系中,既可以作为珊瑚中的共生式共生体,要么是感染其他生物和动物的寄生虫。鞭毛菌具有非典型的大基因组(〜3至250 GB),其基因组织和基因表达模式与密切相关的Apicomplexan寄生虫截然不同。在这里,我们测序并分析了两种早期差异和同时发生的寄生虫鞭毛蛋白变形虫菌株的基因组,以阐明这种非典型基因组特征,鞭毛藻酸酯的进化和宿主专业化的出现。结果:我们使用Illumina配对的短读和牛津纳米孔技术(ONT)的长读测序方法的组合,对两种变形虫菌株(A25和A120)进行了测序,组装和注释的高质量基因组(A25和A120)。我们发现了少数可转座元素,以及短的内含子和基因间区域以及有限的基因家族,共同促进了大变形虫基因组的紧凑性,这一特征可能与寄生虫有关。大多数变形虫蛋白(A25的63.7%和A120的59.3%)没有功能分配,但我们发现许多与Dinophyceae共享的直系同源物。我们的分析表明,尽管种间蛋白质序列相似性低,但两种基因组之间的单向簇编码和高水平的同步保护的基因趋势很强。
摘要 - 由于物流和仓储环境中的广泛应用,垃圾箱包装问题(BPP)最近引起了热情的研究兴趣。真正必须优化垃圾箱以使更多对象被包装到框中。对象包装顺序和放置策略是BPP的两个关键优化目标。但是,BPP的现有优化方法,例如遗传算法(GA),是高度计算成本的主要问题,准确性相对较低,因此在现实的情况下很难实施。为了很好地缓解研究差距,我们提出了一种新颖的优化方法,用于通过深度增强学习(DRL)定期形状的二维(2D)-BPP和三维(3D)-BPP,最大程度地利用空间,并最大程度地减少盒子的使用数量。首先,提出了由编码器,解码器和注意模块组成的修改指针网络构建的端到端DRL神经网络,以达到最佳对象包装顺序。第二,符合自上而下的操作模式,基于高度图的放置策略用于在框中排列有序的对象,从而防止对象与盒子中的盒子和其他对象碰撞。第三,奖励和损失功能被定义为基于对政治演员批评的框架进行培训的紧凑性,金字塔和用法数量的指标。最后,实施了一系列实验,以将我们的方法与常规的包装方法进行比较,我们从中得出结论,我们的方法在包装精度和效率方面都优于这些包装方法。
摘要:已经提出了片上微区谐振器(MRR)来构建时间延迟的储层计算(RC),该计算提供了有希望的配置,可用于具有高扩展性,高密度计算和易于制造的计算。但是,单个MRR不足以为具有多种内存要求的计算任务提供足够的内存。MRR通过光学反馈波导满足了巨大的记忆需求,但以其较大的足迹为代价。在结构中,超长的光学反馈波导实质上限制了可扩展的光子RC集成设计。在本文中,提出了一个时间删除的RC,该RC是通过利用基于硅的非线性MRR与一系列线性MRRS结合使用的。这些线性MRR具有高质量的因素,为整个系统提供了足够的存储能力。我们在具有多种内存要求的三个经典任务上进行定量分析和评估拟议的RC结构的性能,即Narma 10,Mackey-Glass和Santa Fe Chaiotial Chaotion Chaoticerseries的预测任务。在处理NARMA 10任务时,提出的系统具有超长的基于波导的系统,具有与MRR相当的性能,这需要大量的内存能力。尽管如此,与具有基于光反馈波导的系统的MRR中超长的反馈波导相比,这些线性MRR的总长度明显小于三个数量级。这种结构的紧凑性对光子RC的可伸缩性和无缝整合具有重要意义。
背面电源传输网络 我们的 BS-PDN 结构如图 1 所示,其中 PDN 利用了几乎 100% 的 BSM 资源,将电源布线资源与正面的信号分离。A. 背面 DC-DC 转换器:片上 DC-DC 单元转换器 (UC) 提供高效转换和块级电压调节 [3]。封装寄生效应会导致不必要的 IR 压降/反弹,影响正面 (FS) 和 BS-PDN。相反,片上 UC 可以减轻封装和键合带来的压降;然而,它们的大尺寸使它们不适合 FS 集成。相比之下,背面提供了足够的空间,可以实现密集的 UC 集成而不会造成布线拥塞。B. BS-UC 的集成:我们的 4:1 背面 UC(BS-UC)将 3.3V 降至 0.7V 的片上电源电压。为了分离两个电压域,添加了两个额外的背面金属层 MB3 和 MB4(见表 I)。MB3 专用于 BS-UC 布线;MB4 用于为 BS-UC 提供 3.3V VDD 和 0V VSS 输入。图 2 显示了我们的 BS-UC 堆叠。我们的电压域去耦确保 MB4 和 MB2 层之间没有连接,从而保留了 BS-PDN 配置。对于 BS-UC 放置,我们应用了交错策略以实现紧凑性。BS-UC PDN 金属层击穿和 BS-UC 放置如图 3 所示。C. BS-UC 的好处:BS-UC 降低了最坏情况下的动态 IR 降和逐层最小电压降(见图 4)。最后,去耦策略可以实现更高的 C4/微凸块密度,而不会产生显著的电源焊盘面积开销。
背景:Seisonidea(也是Seisonacea或Seisonidae)是一群生活在海洋甲壳动物(Nebalia Spec。)到目前为止仅描述了四个物种。它的单系起源是主要是自由活动的轮动物(单核,bdelloidea)和内寄生虫棘手的蠕虫(acanthocephala)。然而,rotifera-acanthocephala进化枝(rotifera sensu lato或syndermata)内部的系统发育关系受到持续的争论,这是我们对基因组和生活方式如何发展的理解的后果。为了获得新的见解,我们分析了基因组和主要分类单元Seisonidea的转录组的初稿。结果:对GDNA-SEQ和mRNA-SEQ数据的分析发现了法国通道海岸附近的塞森·尼巴里亚·格鲁伯(Seison Nebaliae Grube)的两个遗传学谱系。尽管基因顺序相同,但他们的线粒体单倍型仅具有82%的序列身份。在核基因组中,不同基因紧凑性,GC含量和密码子的用法反映了不同的弦。单倍体核基因组跨越大约。46 MB,其中96%被重建。根据约23,000个超级转录,S。nebaliae中的基因编号应在rotifera-acanthocephala的其他成员发布的范围内。与此相一致,在nebaliae基因组组装中的后唑核直系同源物和ANTP型转录调节基因在所分析的其他组件中相应数量之间。我们还提供了证据表明,旋转 - acanthocephala中seisonidea的基础分支可以反映出对外组的吸引力。因此,通过重建的祖先序列生根,导致了Hemirotifera(bdelloidea+Pararotatoria)内的单系寄生虫(Seisonidea+acanthocephala)。
病理性脑外观可能非常多样化,以至于只能理解为异常,这些异常由其与正常的偏差而不是任何特定的病理特征集来定义。在医学成像中最困难的任务之一中,检测此类异常需要正常脑模型,该模型将紧凑性与表征其结构组织的复杂、长程相互作用的表达性相结合。这些要求是 Transformer 比其他当前候选架构更有潜力满足的,但它们的应用受到对数据和计算资源的需求的限制。在这里,我们将矢量量化变分自动编码器的潜在表示与一组自回归 Transformer 相结合,以实现无监督异常检测和分割,这些异常由与健康脑成像数据的偏差定义,在相对适中的数据范围内以较低的计算成本实现。我们在一系列涉及合成和真实病理病变的 2D 和 3D 数据的实验中将我们的方法与当前最先进的方法进行了比较。在真实病变中,我们利用来自英国生物库的 15,000 名放射学正常参与者训练我们的模型,并在四种不同的脑 MR 数据集上评估其性能,这些数据集包括小血管疾病、脱髓鞘病变和肿瘤。我们展示了卓越的异常检测性能,无论是图像方面还是像素/体素方面,都无需后处理即可实现。这些结果引起了人们对 transformers 在这项最具挑战性的成像任务中的潜力的关注。© 2022 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
微型光纤磁场传感器由于其对抗电磁干扰和紧凑性而引起了极大的兴趣。然而,材料的固有热力学特性使温度交叉敏感性在感知准确性和可靠性方面都是挑战性的问题。在这项研究中,设计了一个超型多核纤维(MCF)尖端传感器,以区别地测量磁场和温度,随后对此进行了实验评估。新颖的3D打印感应分量由一个碗形的微型站点和一个MCF末端的聚合物微流体浸润的微腔组成,充当两个微型Fabry-Perot干涉仪。通过将铁微球掺入微磁管中来实现微型磁场的磁灵敏度,而微流体浸润的微腔增强了高度敏感的温度感应的能力。在MCF的两个通道中使用此微小的光纤面条设备允许通过确定两个参数的灵敏度系数矩阵来区分磁场和温度。该设备表现出高磁场强度灵敏度,约为1 805.6 pm/mt,快速响应时间约为213 ms,高温灵敏度为160.3 pm/℃。此外,传感器的状况较低,为11.28,表明两参数测量的可靠性很高。所提出的3D打印的MCF-TIP探针通过单个光纤内的多个通道检测多个信号,可以为歧视性测量提供一个超级,敏感和可靠的方案。碗形的微型管理器还提供了一个有用的平台,用于将微观结构与功能材料结合在一起,扩展多参数感应方案并促进MCF的应用。
这项工作研究了剪切和湍流对多物种生物膜增长的作用。这项研究主要是通过了解海洋环境中的微塑料(MPS)的生物污染而激发的。通过增加颗粒粘性,生物膜促进MP聚集和下沉;因此,对这一多规模过程的透彻理解对于改善MPS命运的预测至关重要。我们使用振荡网格系统进行了一系列实验室实验,以在均质各向同性湍流下促进小型塑料表面上的生物膜生长,而网格雷诺数在305和2220之间。分析了两种配置:一种塑料样品与网格一起移动(剪切为主导),另一个将样品保持在网格下游固定,因此经历了湍流,但没有平均流(无剪切)。生物膜在所有情况下在几天的时间范围内形成,然后仔细测量和分析塑料碎片上形成的生物量作为湍流水平的函数。使用简约的物理模型进一步解释了无剪切结果,并将生物膜(单动力学)内的养分吸收率与周围散装液体的湍流扩散。结果表明:(i)在剪切主导的条件下,生物膜质量最初在腐烂之前以湍流强度生长,这可能是由于剪切引起的侵蚀; (ii)在无剪切实验中,质量在养分的可用性增强后单调增加,然后由于摄取受限的动力学而饱和。后一种行为由物理模型很好地再现。此外,用扫描电子显微镜分析了塑料片的子集,表明湍流还会影响生物纤维簇的显微镜结合,随着湍流的振幅增加,它们的紧凑性增加了。这些结果不仅有助于我们对流量下生物膜的基本理解,而且还可以为海洋环境中MP运输的全球模型提供信息。