作者于 1991 年发明了一种新型直视色散元件——棱镜-光栅-棱镜 (PGP)。这种专利元件可以实现小型、低成本的高光谱成像光谱仪,适用于工业和研究应用。介绍了 PGP 光谱仪的光学系统和设计过程。该概念已应用于许多高光谱成像光谱仪。通过详细介绍四种设计,展示了 PGP 构造的潜力。1) 低成本机载高光谱成像光谱仪 AISA 的原型是 PGP 概念的首次应用。2) 开发了一种显微镜成像 UV-VIS-NIR 光谱仪系统,用于对木纤维等微米级物体进行光谱测量。3) 设计了一种连接到光纤探头的多点 PGP 光谱仪,用于在线颜色和油膜厚度测量等工业应用。 4) 介绍了用于大规模光纤布拉格光栅阵列的高速询问系统的 PGP 光谱仪设计。如今,PGP 光谱仪在世界范围内用于工业机器视觉和光谱分析、机载遥感和科学应用。
t619-0215 rutfmm%i *wm%k-&8-1 masami terauchi *>,masato koike *>和masahiko isfflno 2> 15高级材料多学科研究所,Tohoku University
引言NEX CG II是多元元素分散X射线荧光(EDXRF)光谱仪,可在许多行业中执行快速定性和定量的痕量元素分析和地址需求。这种下一代高端光谱仪是痕量重金属和卤素分析的理想选择,这是对多个部门的需求增加。这些功能使NEX CG II特别适合于环境监测,工业废物应用,再生材料,电子组件,药物材料,化妆品等。此外,NEX CG II通过几乎所有基质中的铀(U)提供了非破坏性分析,从油和液体到固体,金属,聚合物,粉末,粉末,糊状,涂料和薄项。与常规EDXRF光谱仪不同,nex
X射线吸收精细结构(XAFS)光谱可以获取局部结构信息,使其广泛用于科学研究[1,2],Life Sciences [3],环境研究[4-7]等。1970年代同步辐射的出现显着推动了XAFS技术的开发,从而使其能够发展为与同步加速器设施集成的独特的实验技术。[8,9]然而,同步光束的实验操作对于理解新材料的化学和局部结构至关重要,由于其耗时的性质而面临挑战。同时,用于同步辐射的原位XAFS实验的放射性样品的运输非常复杂。因此,迫切需要根据实验室场景开发X射线吸收光谱仪,以与XAFS实验条件兼容。
最终,他们将研究重点转移到病毒上,发现只要设置适当的参数,他们就能使用一种称为 BioSonics 光谱的技术检测病毒发出的振动。这种声音不仅太微弱,人耳无法听到,而且频率太高,是人类听力的 100 万倍。
摘要。我们报告了在基于超导微谐振器的定制高灵敏度光谱仪中在毫开尔文温度下进行的电子自旋回波包络调制 (ESEEM) 测量。谐振器的高品质因数和小模式体积(低至 0.2pL)允许探测少量自旋,低至 5 · 10 2 。我们在两个系统上测量了 2 脉冲 15 ESEEM:铒离子与天然丰度 CaWO 4 晶体中的 183 W 核耦合,铋供体与 28 Si 同位素富集的硅基板中的残留 29 Si 核耦合。我们还测量了硅中铋供体的 3 脉冲和 5 脉冲 ESEEM。对于近端核的超精细耦合强度和核自旋浓度都获得了定量一致性。
首字母缩略词和缩写 AI 人工智能 AMLD 高级移动泄漏检测 APEC 亚太经济合作组织 CARB 加州空气资源委员会 CEMS 连续排放监测系统 CH 4 甲烷 CO 一氧化碳 CO 2 二氧化碳 DOAS 差分光学吸收光谱仪 EPA 环境保护署(美国) FTIR 傅里叶变换红外光谱仪 GF-5 高分-5 GHG 温室气体 HFC 氢氟碳化物 HVAC 供暖、通风和空调 IOS 国际标准化组织 IoT 物联网 IPCC 政府间气候变化专门委员会 IRA 2022 年通胀削减法案(美国) LEO 低地球轨道 LDAR 泄漏检测和修复 LIDAR 光检测和测距 MoEF 环境和林业部(印度尼西亚) nd 无日期/未注明日期 N 2 O 一氧化二氮 NASA 美国国家航空航天局(美国) NDIR 非色散红外传感器 NIST 美国国家标准与技术研究所(美国) OCO 轨道碳观测站 PEMS 预测排放监测系统 PFC 全氟化碳 PPB 十亿分率 SF 6 六氟化硫 TCCON 总碳柱观测网络 THEOS 泰国地球观测系统 UAV 无人驾驶飞行器 UNFCCC 联合国气候变化框架公约 USAID 美国国际开发署
捕获和处理通过空间分辨的电磁信息基于生物学研究,医学诊断,机器视觉和遥感等领域的重要应用。使用长波红外光谱仪在可见波长处获得更容易获得的数据以外的洞察力非常有吸引力[1]。例如,在红外波长处进行空间解决数据,例如用于植物组织歧视和生物分子检测[2],癌细胞研究[3],机器视觉应用,包括自动驾驶汽车的实时数据处理[4]以及热卫星成像[5]。今天,这些应用程序中的大多数都依赖于使用常规光电探测器以强度的形式捕获空间信息,并随后应用数字处理。在大多数情况下,这些计算可以通过现代算法有效地执行,但生成大量高分辨率数据的应用可以将当前的电子系统推向其极限,并使用大量的时间和能量[6]。
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。