图 1 命名法。两个束,即 UF 和 IFOF,用于突出显示体素(a – e)和体素内的固定单元的分类。a 和 b 中的体素是单固定单元体素和单束体素以及单束固定单元的示例。由于 UF 和 IFOF 在体素 c 中分歧,因此这是多固定单元体素和多束体素的示例,其中一个固定单元被归类为单束固定单元,另一个被归类为多束固定单元。体素 d 突出显示 IFOF 的扇形化,这导致多固定单元体素和单束体素,并且两个固定单元都是单束固定单元。最后,IFOF 和 UF 都以相同的方向穿过体素 E,因此体素 e 是一个单方向体素,但也是一个多束体素,也是一个多束固定体素。这个固定体素,以及这个体素,代表了纤维束成像的瓶颈
在人类连接组计划的带动下,具有超高梯度强度的扫描仪的开发显著提高了体内扩散 MRI 采集的空间、角度和扩散分辨率。可以利用改进的数据质量来更准确地推断微观结构和宏观结构解剖结构。然而,这种高质量的数据只能在全世界少数几台 Connectom MRI 扫描仪上采集,而且由于硬件和扫描时间的限制,在临床环境中仍然无法使用。在本研究中,我们首先更新了基于纤维束成像的手动注释主要白质通路的经典协议,以使其适应当今最先进的扩散 MRI 数据所能产生的更大体积和更大变化的流线。然后,我们使用这些协议手动注释来自 Connectom 扫描仪的数据中的 42 条主要通路。最后,我们表明,当我们使用这些手动注释的通路作为具有解剖邻域先验的全局概率纤维束成像的训练数据时,我们可以在质量低得多、更广泛可用的弥散 MRI 数据中对相同的通路进行高精度、自动重建。这项工作的成果包括来自 Connectom 数据的 WM 通路的全新综合图谱,以及我们的纤维束成像工具箱的更新版本,即受基础解剖学约束的 TRActs (TRACULA),该工具箱使用该图谱中的数据进行训练。图谱和 TRACULA 均作为 FreeSurfer 的一部分公开分发。我们首次全面比较了 TRACULA 与更传统的多感兴趣区域自动纤维束成像方法,并首次演示了在高质量 Connectom 数据上训练 TRACULA 以造福使用更温和的采集协议的研究。
纤维束成像广泛用于通过扩散加权磁共振成像 (dMRI) 在体内非侵入性地绘制白质束。与所有科学方法一样,无论是在基础神经科学领域还是在临床环境中,适当的验证都是成功应用纤维束成像的关键先决条件。众所周知,从局部扩散信号间接估计纤维束非常模糊且极具挑战性。此外,纤维束成像方法的验证因缺乏真实的基础事实而受到阻碍,这是由极其复杂的大脑微结构造成的,这种微结构无法通过非侵入性直接观察到,而大脑中庞大的长距离纤维连接网络的基础正是纤维束成像方法的实际目标。作为可用于验证的真实基础事实的体内数据的替代品,一种广泛且成功采用的方法是使用合成幻影。在这项工作中,我们概述了物理和数字幻影领域的最新技术,回答了以下指导性问题:“什么是 dMRI 幻影,它们有什么用处?”,“用于验证纤维束成像的理想幻影是什么样的?”和“研究界可以使用哪些幻影、幻影数据集和用于创建它们的工具?”。我们将进一步讨论使用 dMRI 幻影的局限性和机遇,以及该研究领域未来可能的发展方向。
图 10 重建的扣带束通路。上图显示穿过 ROI(显示为红色)的轨迹。中图显示在颞区放置额外的“AND”ROI(显示为白色)后剩余的通路。请注意,这样做后,额叶通路不再被选中(如问号所示)。类似地,在包含前部“AND”ROI(显示为白色)后,颞叶部分不再存在,如下图问号所示
目标受众:对使用扩散 MRI 流线纤维束成像定量评估大脑白质连接感兴趣的研究人员。目的:由于流线重建过程的非定量性质 [1],使用扩散 MRI 定量评估大脑白质连接非常困难。针对该问题提出的解决方案包括启发式校正已知的重建偏差 [2,3](可能无法补偿所有重建误差)或评估连接路径上某些扩散模型参数 [4,5,6](依赖于该参数的量化和可解释性)。最近,提出了球面反卷积信息纤维束成像滤波 (SIFT) 方法 [7],通过选择性去除流线,将重建的流线密度与通过扩散信号球面反卷积估计的单个纤维群体积 [8] 进行匹配;完成此过程后,连接两个区域的流线计数变为连接这些区域的白质通路横截面积的估计值(最高可达全局缩放因子)。之前已证明,如果首先应用 SIFT 方法 [9],大脑连接的定量测量与从人脑解剖估计的特性会更加密切相关。这种方法的缺点是,即使生成了许多流线(计算成本高昂),完成过滤后,流线密度可能非常低(这对于定量分析来说是不可取的 [10,11])。在这里,我们提出了一种替代解决方案,称为 SIFT2:此方法不是去除流线,而是为每条流线得出合适的加权因子,以使总流线重建与测量的扩散信号相匹配。方法:与原始 SIFT 方法一样,我们执行纤维方向分布 (FOD) 分割,将流线分配给它们穿过的 FOD 叶,并得出一个处理掩模,以减少非白质体素对模型的贡献。我们将离散 FOD 叶 L 的积分表示为 FOD L ,将归因于该叶的流线密度表示为 TD L ,将处理掩模 [7] 在该叶所占体素中的值表示为 PM L ;从这些中我们得出比例系数 μ [7](等式 1)。每条流线 S 都有一个关联的加权系数 FS 。FOD 叶 L 中的流线密度定义为(等式 2),其中 | SL | 是流线 S 穿过归因于 FOD 叶 L 的体素的长度。目标是找到一组加权系数 FS ,以最小化成本函数 f(等式 3),其中 λ 是用户可选择的正则化乘数,它将流线加权系数约束为与穿过相同 FOD 叶的其他流线相似(等式 4)。使用迭代线搜索算法可以找到解决方案:每个加权系数都经过独立优化,同时考虑一组相关项,这些相关项表示在对每个系数进行独立牛顿更新的情况下所有 L 的 TD L 的估计变化(等式 5)。数据采集和预处理:图像数据是从健康男性志愿者的 3T Siemens Tim Trio 系统(德国埃尔朗根)上采集的。DWI 协议如下:60 个弥散敏化方向,b =3,000s.mm -2,7 b =0 体积,60 个切片,2.5mm 各向同性体素。使用 MPRAGE 序列(TE/TI/TR = 2.6/900/1900ms,9° 翻转,0.9mm 各向同性体素)获取解剖 T1 加权图像。对弥散图像进行了校正以适应受试者运动 [12]、磁化率引起的扭曲 [13] 和 B 1 偏置场 [14]。使用约束球面反卷积 (CSD) [15] 估计纤维取向分布。使用 iFOD2 概率流线算法 [16] 生成了 1000 万条流线的纤维束图,该算法结合了解剖约束纤维束成像框架 [17] ,随机分布在整个白质中。结果:将 SIFT2 与执行 SIFT“收敛”(移除尽可能多的流线以实现与数据的最佳拟合 [7] )进行了比较。对于 SIFT2,我们使用了 λ = 0.001,这是基于近似 L 曲线分析选择的。SIFT 和 SIFT2 方法都以这样一种方式操纵重建,使得流线密度与通过 CSD 得出的体积估计值高度一致(图 1)。然而,SIFT2 实现了比 SIFT 更优秀的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须去除大约 96% 的流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。
简介:人们越来越有兴趣开发使用扩散 MRI 纤维束成像分析活体整个人脑结构连接的方法和模型。这些分析依赖于连接组重建的稳健性和生物学准确性;不幸的是,许多方法因素都会影响这种重建(以及任何衍生的测量值),甚至包括播种策略 [1] 。部分原因是在流线纤维束成像中,轨迹是彼此独立生成的,因此大脑中的特定通路可能相对于底层生物学被过度定义或定义不足。在这里,我们提出了一种全脑纤维追踪数据的后处理滤波器,以补偿这种方法偏差。方法:Raffelt 等人 [2] 的模拟结果表明,使用球面反卷积产生的纤维取向分布 (FOD) 中每个峰的幅度与与该峰对齐的体素内轴突的细胞内体积分数成正比。因此,如果全脑纤维追踪的结果是对底层神经元轴突结构的完美重建,则高角度分辨率空间中的轨迹密度应与 FOD 峰值的方向和相对幅度相对应。因此,我们可以构建一个简单的成本函数: