对于许多俄语学习者来说,学习词汇的任务可能非常艰巨。从结构上讲,俄语单词包含词根、词干、前缀、后缀和词尾;更好地理解这些方面可以使学习俄语更有收获。俄语单词的每个部分都会告诉读者一些关于单词含义或功能的信息。该项目旨在探索俄语中前缀的功能,并以一种有助于大学水平的普通学习者更顺畅、更直观地学习俄语的方式呈现它们。该项目主要探讨教科书《俄语:从中级到高级》(作者 Olga E. Kagan、Anna S. Kudyma 和 Frank J. Miller)中的前缀主题;还对《Голоса:俄语基础教程》第 5 版第一册和第二册进行了研究,这些书通常用于俄语入门和中级课程。本研究遵循的过程包括收集这些教科书中常用的俄语前缀列表,将具有相同前缀的单词分组组织起来,并分析前缀在生成新词中的作用,以及确定每个前缀的相对含义。目标是使用这些列表来加快普通学习者学习词汇的速度,同时通过使俄语更直观来加强学习者对俄语的理解和掌握。
全息原理认为,体空间的自由度 (DoF) 被编码为边界量子场系统的信息 [1, 2, 3]。该原理的已知例子有黑洞熵 [4, 5, 6, 7] 和 d + 2 维反德西特时空/d + 1 维共形场论 (AdS d +2 /CFT d +1 ) 对应关系 [8, 9, 10, 11]。在发现 AdS d +2 /CFT d +1 对应关系中的全息纠缠熵的 Ryu–Takayanagi 公式 [12, 13, 14, 15] 后,多尺度纠缠重正化假设 (MERA) [16, 17] 被提出作为该公式背后的体量子纠缠的全息张量网络 (HTN),其中 d = 1 为零温度 [18, 19]。这里,MERA 是通过解纠缠器层(对我们而言是二分量子比特门)和粗粒化器层(等距)的半无限交替组合对量子比特中边界 CFT 2 的量子基态进行实空间重正化群变换 [16, 17]。MERA 是一个尺度不变的张量网络。基于对 HTN 的初步研究 [18, 20, 21],本文作者对 HTN 进行了经典化 [22, 23, 24, 25]。其中,HTN 的经典化是指在 HTN 中采用单量子比特的第三 Pauli 矩阵作为超选择规则算子 [25]。即,作用于 HTN 的希尔伯特空间的量子力学可观测量需要与第三 Pauli 矩阵交换,并根据这种交换性进行选择。HTN 经典化后,经典化全息张量网络 (cHTN) 的量子态对于所选可观测量在第三 Pauli 矩阵的特征基上没有量子干涉,因此等价于经典混合态,即第三 Pauli 矩阵乘积特征态的统计混合,
摘要 我们研究了量子里奇曲率,它是在早期工作中引入的,在完整的四维量子引力中,以因果动力学三角剖分 (CDT) 的形式非微扰地表述。CDT 方法的一个关键发现是德西特型宇宙的出现,证据是蒙特卡罗对全局尺度因子量子动力学的测量与半经典迷你超空间模型的成功匹配。一个重要的问题是量子宇宙是否也在其更局部的几何性质方面表现出半经典性。利用新的量子曲率可观测量,我们检查量子几何的 (准) 局部性质是否类似于恒定弯曲空间的性质。我们发现证据表明,在足够大的尺度上,曲率行为与四维球面的曲率行为兼容,从而加强了用德西特空间来解释动态生成的量子宇宙。
Jonathan E. Halpert 是香港科技大学 (HKUST) 理学院 (SSCI) 化学系 (CHEM) 的助理教授。他于 2008 年在麻省理工学院 (MIT) 获得物理化学博士学位,后来担任中国科学院过程工程研究所 (CAS-IPE) 的访问学者和剑桥大学光电子组 (OE) 的博士后研究员。2013 年至 2017 年,他在惠灵顿维多利亚大学 (VUW) 化学和物理科学学院 (SCPS) 担任讲师和高级讲师,并在那里担任卢瑟福发现研究员和麦克迪亚米德先进材料和纳米技术研究所的首席研究员。 Halpert 团队于 2017 年迁至香港科技大学,其研究兴趣包括使用半导体材料(尤其是钙钛矿)的纳米晶体、纳米材料和量子点来生产功能性电子和光电子装置,包括忆阻器、储能装置、光电探测器、太阳能电池和 LED。Halpert 教授是 50 多篇同行评审论文的作者,拥有超过 7500 次职业引用 (GS) 和 11 项美国专利和申请。他的作品发表在《美国化学会志》、《ACS Nano》、《Nano Letters》、《自然光子学》、《自然通讯》、《能源与环境科学》、《材料化学》、《物理化学快报》、《ACS 光子学》和《ACS 应用材料与界面》等知名期刊上。Halpert 团队目前专注于无铅金属-金属卤化物材料和器件。
您的职业生涯涉及 Neuralink、Creator、Segovia 和 Curative, Inc. 等组织的各种重要职位。这些经历如何影响了您在 Convergent Research 创建和管理重点研究组织 (FRO) 的方法?我曾是几家技术含量高、发展迅速的初创公司的早期团队成员。我有幸目睹了才华横溢、敬业的企业家以技巧和沉着应对极其困难的技术挑战。在每种情况下,都有一个明确的目标,例如“构建一个软件工具,每月可以向撒哈拉以南非洲最偏远地区的数十万受益人提供援助款”或“扩大加利福尼亚的 COVID-19 检测能力”或“创建具有 X 个输入/输出通道的可植入脑机接口”。在每种情况下,领导者都必须征求团队和市场的反馈意见,以找到正确的方法,并且他们必须协调来自不同学科的多个团队的努力——硬件、软件、医疗、供应链、监管、销售、筹款等。在极短的时间内完成的工作量
精神健康和成瘾问题部长兼卫生部副部长 Ya'ara Saks 阁下以线上方式参加了会议。部长 David Joanasie、部长 John Main 和部长 Daniel Qavvik 和我一起参加了会议。议长先生,会议讨论了框架的观点以及国际北极政策、北极和北方安全和防御、北方住房和基础设施以及精神健康和成瘾问题。我借此机会概述了在北极进行重大投资的迫切需求,这些投资既能满足当地社区的需求,又能为经济发展提供更多的就业机会,解决和解问题,并满足我国在北极主权和安全方面的地缘政治利益。议长先生,《北极和北方政策框架》于 2019 年启动,阐述了对未来的共同愿景,即强大、自力更生的人民和社区共同努力,在国内外建设一个充满活力、繁荣和可持续的北极和北方地区。它指导了加拿大政府在2030年及以后在北极的优先活动和投资,并使加拿大的国家和国际政策目标与原住民以及生活在北极和北方的每个人的优先事项更好地保持一致。作为北方省长和原住民领袖,我们投入了大量时间来实施北极政策和北方政策框架的愿景,并为北方开发持久的机会。议长先生,我在会上强调,联邦政府加紧对北方进行变革性投资以实现该框架的愿景还为时不晚。谢谢议长先生。>>掌声 议长:部长发言。经济发展和交通部部长大卫·阿基阿戈克先生。
Ph.D.聚合物化学的学生Max Planck胶体和界面研究所,德国波茨坦,“基于碳的薄膜的化学蒸气沉积:从二进制到三元系统”,主管:H。 c。 MarkusAntonietti有机薄膜的有机薄膜(化学蒸气沉积)和有机薄膜的表征(椭圆表)的新实验室设置有机半导体薄膜的合成:设计和开发用于通过化学蒸气沉积/div>的薄膜材料设计和开发用于薄膜的材料,Ph.D.聚合物化学的学生Max Planck胶体和界面研究所,德国波茨坦,“基于碳的薄膜的化学蒸气沉积:从二进制到三元系统”,主管:H。 c。 MarkusAntonietti有机薄膜的有机薄膜(化学蒸气沉积)和有机薄膜的表征(椭圆表)的新实验室设置有机半导体薄膜的合成:设计和开发用于通过化学蒸气沉积