●涵盖了多种用于光学应用的晶体:激光和非线性光学晶体,磁光晶体,闪烁体/剂量计晶体,宽带隙半导体,压电和铁电晶体等等等等。●我们当前的主要研究目标是:用于高亮度照明设备的单晶磷光器。用于激光机械的光学隔离器的法拉迪旋转器。用于高温使用的压电晶体,例如燃烧压力传感器。氧化包胶作为新型宽带隙半导体。用于IR光学应用的Chalcogenide●积极促进与大学,国立研究所和行业的合作,并积极追求国际合作,以促进新的观点和原始思想。
药物输送系统需要改进多种药物化合物的药理特性,开发创新和高效的药物。在当前情况下,有大量用于治疗人类疾病的药物输送系统。为了实现这一目标,已经设计出几种药物输送技术,并正在尝试用于鼻腔和肺部输送。智能药物输送系统的性能一直在得到增强,以实现有效的治疗作用,同时最大限度地减少与之相关的负面副作用。地球上最常见的元素之一是碳及其同素异形体改性碳纳米管和石墨烯基纳米材料。这些碳纳米结构可以设计成更可靠地帮助输送或靶向药物,以及创新治疗方法。碳纳米结构还可用于治疗癌症和开发新的癌症诊断方法药物。这些方法预计将有助于将分子成像与化学疗法相结合进行诊断。本文重点介绍了药物输送系统、纳米粒子以及碳基纳米粒子(如碳纳米管、石墨烯、纳米金刚石、石墨烯量子点和富勒烯)对研究人员的作用。
摘要 电化学界面对于储能装置的功能和性能至关重要。因此,开发表征这些界面的新方法以及电化学性能对于弥合现有知识空白和加速储能技术的发展至关重要。特别需要的是能够以非破坏性的方式表征表面或界面,并具有足够的分辨率来辨别单个结构和化学构件。为此,利用原子力显微镜平台内近场相互作用的亚衍射极限低能红外光学探针,例如伪外差纳米成像、光热纳米成像和纳米光谱以及纳米级傅里叶变换红外光谱,都是强大的新兴技术。它们能够以纳米分辨率进行非破坏性表面探测和成像。本综述概述了最近使用这些先进的红外近场探针表征可充电电池中的原位、原位和操作电极材料和电化学界面的努力。
摘要:微光发射二极管(µ LED)具有高响应速度,寿命长,高亮度和可靠性的优势,被广泛视为下一代展示技术的核心。但是,由于诸如高生产成本和低量子效率(EQE)之类的问题,µ LED尚未真正商业化。此外,量子点(QD)的颜色转换效率(CCE) - µ LED也是其在展示行业中实际应用的主要障碍。在这篇综述中,我们系统地总结了纳米材料和纳米结构在µ LED中的最新应用,并讨论了这些方法对提高µ LED的发光效率以及QD-µLED的颜色转换效率的实际效果。最后,提出了µ LED商业化的挑战和未来前景。
KLA服务从工具安装和系统优化到生产率增强和全球供应链管理,KLA服务是全球客户的可信赖合作伙伴 - 提供了专注于最大化工具性能和可用性的无与伦比的体验。©2023 KLA Corporation。全球保留的所有权利。KLA保留更改硬件和/或软件规格的权利,恕不另行通知。所有品牌或产品/服务名称可能是其各自所有者的商标,包括但不限于:KLA,Orbotech。
肺癌是最常见的癌症之一,死亡率高,男女皆有,尤其是男性。肺癌被公认为全球死亡的主要原因之一,每天威胁着超过 160 万人的生命。吸烟被认为是肺癌的主要危险因素。其他因素,包括遗传易感性、呼吸系统疾病史、感染、环境因素甚至饮食,都归因于危险因素。早期诊断在医学上对预防疾病、管理和有效治疗起着至关重要的作用。尽管癌症是工业化国家的主要死亡原因,但传统的抗癌药物不太可能显著提高患者的预期寿命和生活质量。近年来,纳米技术在癌症诊断和治疗方面的开发和应用取得了重大进展。纳米结构方法的优势在于它们比传统药物更具选择性。这一进展导致了被称为纳米医学的新型癌症治疗领域的发展。人们研究了各种基于纳米载体的制剂,包括脂质、聚合物、磁性和多孔二氧化硅颗粒,用于检测、成像、筛查和治疗各种原发性和转移性肿瘤。纳米药剂的应用和扩展为制药科学带来了一个令人兴奋且充满挑战的研究时代,尤其是在新兴抗癌药剂的递送方面。本综述的目的是总结以纳米药物为重点的各种肺癌治疗方式。
摘要。纳米技术为各种新型国防应用打开了大门,例如智能材料、新型燃料源、储能设备、更硬/更轻的平台和更新的医疗应用。使用复合材料代替钢材可以组装轻型飞机,从而减少燃料消耗、二氧化碳排放和燃料成本。由于这些聚合物纳米复合材料和材料具有增强的机械、电气和热性能,它们已在军事、汽车、电子、食品和休闲等多个国防相关领域得到应用。本概述旨在深入了解轻质纳米填料增强聚合物纳米复合材料的快速发展能力,并探索其在各种国防相关应用中的潜在用途。
收到日期:2023 年 7 月 12 日 修订日期:2023 年 8 月 26 日 接受日期:2023 年 9 月 14 日 发表日期:2023 年 9 月 30 日 摘要 - 纳米技术正在改变能源解决方案;该研究涵盖了功能性和智能纳米材料的最新能源应用。纳米材料用于能量转换、存储、收集和效率。纳米材料改进了太阳能电池、燃料电池和热电装置。它们巨大的表面积和可配置的带隙提高了能量转换性能。锂离子电池、超级电容器等中的纳米材料彻底改变了能源存储。纳米结构电极和纳米复合材料提高了能量密度、循环稳定性和充放电速率。压电和摩擦电纳米发电机可以捕获环境能量用于自供电设备。纳米材料还可以提高能源管理系统的效率。使用纳米材料的智能窗户可以管理光和热传递,从而节省建筑物的能源。纳米传感器通过实时监控和优化能源来提高能源效率。本文还探讨了扩大纳米材料生产和制造规模以用于大规模应用的问题。纳米材料集成到能源设备中需要稳定性、可靠性和安全性。这篇评论文章总结了目前对能源领域功能性和智能纳米材料的研究及其解决全球能源问题的潜力。它有助于学者、工程师和政治家创造可持续和高效的能源解决方案。