混合超级电容器(SC)是锂离子电池的有希望的替代品,可以在电解质中使用氧化还原活性添加剂设计,同时维护常规的超级电容器电极[1]。通过静电纺丝合成的碳纳米纤维(CNF)由于其1D结构而脱颖而出,作为高性能电极材料,它提供了高表面积,均匀的孔隙率,均匀的孔隙率,增强的柔韧性和有效的电子传输[2]。这项研究评估了源自电纺丝多丙烯酸(P-CNF)和聚丙烯硝基/聚(B-CNF)纤维的CNF的电化学性能,在含有酸性的氧化还原电解液中测试了含有酸性的氧化还原电解液(HQ-HQ-HQ-HQ)(HQ-HQ)(HQ-HQ);总部在1 mol ll⁻⁻h so₄)和没有总部的对照电解质中(H so so so; 1 mol l l⁻h h so₄)。CNF表现出均匀的细丝形态,如扫描电子显微镜(SEM)图像所揭示的那样(图1a-b),高表面积为399平方米(p-cnf)和426平方米g⁻见(b-cnf),通过n₂吸附/解吸分析确定。使用三电极构型(CNF作为电极和AG/AGCL作为参考电极)在Swagelok型细胞中进行电化学测试,并进行了Galvanostatic荷兰/放电(GCD)测量。图1c显示了在不同电流密度下B-CNF的GCD曲线,揭示了由HQ的氧化还原反应引起的高原出现。这显着影响了特定的电容值(图1d),与常规的CNF相比,氧化还原电解质中的CNF要高得多。在hq-h so中,B-CNF实现了最佳的电化学性能,在10 a g⁻⁻时达到428.7 f g g⁻见和304.5 f g⁻见,在50 a g⁻。这些发现突出了CNF与基于HQ的氧化还原电解质的出色兼容性,为开发可持续,薄且灵活的高性能储能系统提供了可行的策略。
2023 年,植物性成分的新来源、培育这些植物的新方法以及优化口味、质地和营养的新工艺是推动植物性食品研究的关键技术主题。从新的无动物脂肪和乳化剂到新型水生、豆科和升级再造蛋白质来源,成分开发取得了进展。挤压等传统纹理化方法的可扩展性得到了提高,而纤维纺丝和正在申请专利的“过程控制微结构设计”等有前景的较新的自下而上方法扩展了可扩展植物蛋白纹理化的可用技术。2023 年,Beyond Meat 发布了其第二份经 ISO 审核的生命周期评估 (LCA),结果显示,与普通传统牛肉饼相比,Beyond Burger 3.0 肉饼产生的温室气体排放量减少了 90%,水和土地使用量减少了 97%,所需的不可再生能源减少了 37%。
摘要:我们介绍了一种辐射冷却材料,它能够提高反照率,同时降低表面温度,特别适合用作放置在双面太阳能电池板之间的人造地被植物。将一层聚丙烯腈纳米纤维(nanoPAN)电纺丝到涂有聚合物的银镜上,可产生 99% 的总太阳反射率(反照率为 0.96)和 0.80 的热发射率。高反照率和发射率的结合是通过 nanoPAN 的分层形态引起的波长选择性散射实现的,其中包括细纤维和珠状结构。在户外测试中,该材料的性能比最先进的控制辐射冷却功率高出约 20 W/m2,并将商用硅电池产生的光电流提高多达 6。 4 mA / cm 2 与沙子相比。这些实验验证了高反照率地被植物的基本特性,并在现场双面电池板的热和光管理中具有良好的潜在应用。
本文介绍了一种经济有效的方法来改善碳纤维增强聚合物 (CFRP) 预浸料复合材料的物理和机械性能,其中合成电纺多壁碳纳米管 (MWCNT)/环氧纳米纤维并将其加入到传统 CFRP 预浸料复合材料的层之间。通过优化的电纺丝工艺成功生产出 MWCNT 取向环氧纳米纤维。纳米纤维直接沉积在预浸料层上以实现改善的粘附性和界面结合,从而增加强度并改善其他机械性能。因此,高应力状态下的层间剪切强度 (ILSS) 和疲劳性能分别提高了 29% 和 27%。几乎看不见的冲击损伤 (BVID) 能量显著增加,最高可达 45%。由于 CFRP 层之间存在高导电性的 MWCNT 网络,热导率和电导率也显著提高。所提出的方法能够在预浸料的层间界面处均匀沉积高含量的 MWCNT,以增强/提高 CFRP 性能,这在以前是无法实现的,因为环氧体系中随机取向的 MWCNT 会导致树脂粘度高。
一种具有成本效益的方法,可以改善碳纤维增强聚合物(CFRP)预报复合材料的物理和机械性能,在该复合材料中,在传统的CFRP Prepreg复合材料的层次之间合成了电纺多多壁碳纳米管(MWCNT)/环氧纳米纤维。通过优化的静电纺丝过程成功产生了与MWCNT一致的环氧纳米纤维。纳米纤维直接沉积到预处理层上,以改善粘附和界面粘结,从而增加强度和其他机械性能的改善。因此,高压力性方案的层间剪切强度(ILSS)和疲劳性能分别增加了29%和27%。几乎看不见的撞击损伤(BVID)能量显着增加了45%。由于CFRP层之间高度导电MWCNT网络的存在,热电导率也得到了显着增强。所提出的方法能够在预处理的间层间界面上均匀地沉积MWCNT,以增强/增强CFRP性质,以前尚未证明,由于在环氧系统中由随机定向的MWCNT引起的高树脂粘度。
摘要 可再生生物质的太阳能热解在活性炭材料的燃料或化学原料可持续生产方面具有巨大潜力。本文,我们报道了一种生产高质量碳纳米纤维 (CNF) 前体以及随后的 CNF 作为低成本且环保的储能材料的方法。具体而言,利用太阳能热解松木以生成富含苯酚的生物液体前体,该前体被发现为通过静电纺丝合成无粘合剂柔性电极材料的有力候选者。用 30% 太阳能驱动的生物液体和 70% 聚丙烯腈制备的 CNF 具有高比表面积和丰富的微观结构,这是其在比电容(电流密度为 0.5 A g 1 时为 349 F g 1)方面的电化学性能的关键,在 6 M KOH 水性电解质中具有显着的倍率性能、可逆性和循环稳定性。因此,太阳能生物液体是可行的CNF前体,并且此类衍生的CNF具有在储能装置中应用的潜力。
在过去的几十年中,微型和纳米化方法的演变显着刺激了心脏组织工程的进步。微型和纳米级的工程允许使用心肌细胞重建心脏组织。人类诱导的多能干细胞的突破扩大了该领域,使成人细胞的人体组织可能发展,从而避免了使用胚胎干细胞的伦理问题,但也会产生患者特异性的人类工程组织。在心脏的情况下,源自人类诱导的多能干细胞和微/纳米工程设备的心肌细胞的组合引起了心脏病的新治疗方法。在这篇综述中,我们调查了用于心脏组织工程的微型和纳米化方法,范围从干净的室内图案(例如光刻和等离子体蚀刻)到静电纺丝和添加剂制造。随后,我们报告了心脏培养系统微流体的主要方法,所谓的͞hğăƌƚŽŷcśŝɖ͟,我们评估了它们对心脏病建模和药物筛查平台的未来开发的效力。
摘要 - 在这项工作中,报告了具有实质感知性能的室温(RT; 〜27°C)操作的氧化铁 /聚苯胺(Fe₂O₃ /PANI)的柔性氨(NH₃)传感器。最初,在可生物降解的纸基板上打印了截面电极(IDE)(使用石墨烯基墨水)。此外,pani纳米纤维在印刷的IDE上进行了电纺,然后掉落了Fe 2 O 3的层。X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)研究,以确认复合形成,然后进行扫描电子显微镜(SEM)分析,以检查传感表面形态。在0.5 ppm(即500 ppb)至50 ppm的范围内检查了氨的感应性能,即使在0.5 ppm处也达到1.99%的响应。响应 /恢复时间被指出为950 s / 250 s,朝0.5 ppm的氨。此外,还研究了对包括二氧化碳(CO 2),二氧化碳(NO 2),一氧化碳(CO)和二氧化硫(SO 2)在内的干扰气体的选择性。还提出了复合材料对氨气检测的提议的感应机制。索引项 - 氨传感器;静电纺丝; Fe 2 O 3 /Pani复合材料;灵活的传感器;室温;纸基材。
纳米纤维技术在生物医学领域中的应用引起了人们的兴趣,因为它有可能改变组织工程,伤口愈合和抗菌治疗等领域。本文对纳米纤维技术的最新进展进行了全面的综述,尤其是侧重于静电纺丝和3D打印方法,这些方法可以制造模仿本机细胞外基质的脚手架。这些技术促进了具有较高的表面与体积比率,可调节孔隙率和增强的机械性能的纳米纤维的发展,该特性是为满足特定生物医学需求而定制的。尽管具有有前途的特征,但仍存在诸如孔径优化有效细胞浸润的挑战以及硬组织再生所需的机械鲁棒性。审查还探讨了可持续聚合物从自然资源中的演变,突出了它们创造可生物降解和生物相容性脚手架材料的潜力。未来的方向强调了跨学科合作的必要性,以克服当前的限制和规模从实验室到工业水平的规模。正在进行的研究和开发工作旨在完善纳米纤维在临床应用中实现最佳性能的特性,从而强调了该领域的动态和不断发展的性质。
摘要。植入物领域正在通过生物活性涂层重新定义,这些涂料已成为医疗植入物中的开创性区域。这些独特的涂层包含生物活性分子,具有与相邻生物周围环境相互作用,促进骨整合,提供抗菌质量并为整体植入物功能贡献的特殊能力。本摘要探讨了生物活性涂层中的最新改进和设计,重点是它们在增强医疗植入物的功能和耐用性方面的重要作用。主要目标之一是整合诸如羟基磷灰石和生物活性玻璃等尖端材料,这些材料鼓励植入物整合并产生生物活性离子以进行治疗作用。通过修改这些涂层的表面粗糙度和孔隙度可以准确控制组织的细胞粘附和再生。此外,通过抗生素和银纳米粒子等抗菌药物(例如,感染的风险(这是植入手术中的普遍关注点))也可以最小化。为了实现涂料沉积中的一致性和寿命,这项研究还研究了最新技术,包括等离子体喷涂和静电纺丝。关键字:生物活性,涂料,植入物,骨整合,生物材料