摘要:激光定向能量沉积 (L-DED) 是一种值得注意的增材制造方法,其中金属粉末通过喷嘴喷涂,然后使用激光逐层压实。与其他增材制造工艺不同,DED 对制造部件尺寸的限制较少,这使其有利于生产大型部件。然而,在增材制造中使用 DED 需要仔细优化各种工艺参数,包括激光功率、送粉速率、喷嘴扫描速度和沉积路径,因为这些参数会显著影响制造部件的几何形状和性能。最近的研究已经广泛调查了在不同能量密度下通过 DED 制造的部件的微观结构和性能,但对与送粉相关的变量的研究仍然缺乏。在本研究中,以粉末线密度 (PLD) 为参数,观察到在使用 STS316L 进行 DED 增材制造时,焊珠几何形状、微观结构和力学性能的变化以及送粉密度的变化。通过粉末进料速率和扫描速度控制,利用粉末线密度对 STS316L 合金粉末进行 1 线沉积,从而能够在沉积过程中观察焊珠的几何形状和熔池形状。此外,通过控制粉末线密度的 DED 制造方形样品,以观察由此产生的微观结构和机械性能。观察到,即使在相同的能量密度下,样品也会根据粉末线密度表现出不同的晶粒形貌、微观结构和机械性能,各向异性的变化尤其显著。这凸显了粉末进料密度作为与能量密度一起优化 DED 增材制造工艺的关键变量的重要性。本研究的结果有望通过调节粉末进料密度来帮助控制金属增材制造工艺中制造部件的各向异性和强度。
图 1. 2 股 CNT 纱线表面和横截面:(a) 长度范围为 150-500 米、线密度为 7-10 tex 的 CNT 纱线卷;(b) 不规则纱线横截面;(c) 纵向
大的身体,额外的视力差,并且偏爱夜间活动;在幼鸟中缺乏飞行经验,可能会增加碰撞的脆弱性;偏爱栖息,栖息或筑巢的高架位置;偏爱无树的开放式栖息地,并吸引升高的杆子;植入和群体行为可能会损害大浓度的可见性;对干扰的敏感性;偏爱低空栖息地,那里的电源线密度很高;低物种密度(替代潜力较低);低生殖潜力,这意味着成人死亡率的增加会导致人口恢复的时间增加;低繁殖力,低自然死亡率和长寿的预期;长途洲际移民,可能通过一个区域,可能会受到新线和其他线路的影响。
ij ij ij XYKC = , , , , { } 轴承刚度[N/m]和等效粘性阻尼系数[Ns/m] L 轴承轴向长度[m] M , M est 测量和估计的MMFB质量[kg] M m 金属网环质量[kg] P 功率损耗[W] R 旋转轴的半径[m] R i 金属网环内半径[m] R o 金属网环外半径[m] T tf 顶部箔厚度[m] U d , U v , U f 位移[mm]、电压[V]和力[lb]的不确定性 W 轴承上的总静载荷[N] WS 施加的静载荷[N] WD 轴承组件的自重[N] ρ MM 线密度=金属网质量/(金属网体积×金属密度) υ 泊松比 ω 激励频率[Hz]
ij ij i j X Y K C = , , , , { } 轴承刚度[N/m]和等效粘性阻尼系数[Ns/m] L 轴承轴向长度[m] M , M est 测量和估计的MMFB质量[kg] M m 金属网环质量[kg] P 功率损耗[W] R 旋转轴的半径[m] R i 金属网环内半径[m] R o 金属网环外半径[m] T tf 顶部箔厚度[m] U d , U v , U f 位移[mm]、电压[V]和力[lb]的不确定性 W 轴承上的总静载荷[N] W S 施加的静载荷[N] W D 轴承组件的自重[N] ρ MM 线密度=金属网质量/(金属网体积×金属密度) υ 泊松比
摘要 引线键合工艺使用金、银和铜线等贵重材料将芯片连接到条带并完成半导体单元的电路。引线消耗量以每单位消耗的长度来确定,消耗量越高,产品成本就越高。在单位加工时,每单位标准引线消耗量为 0.036,相当于每 1000 米卷轴 27.8K 单位,但仅生产了 26.9K 单位。该研究重点验证缺少 800 单位(相当于 32 米长度)的可能原因。使用金线密度、体积和引线重量可以计算出引线长度,可用于手工计算和验证实际引线长度。用于验证的方法表明,引线长度的实际单位消耗量为 0.037 米,每单位缺少 0.001 米,这相当于每 1000 米卷轴约 800 单位。同时,供应符合每卷 1000 米的线材标准。通过收集的结果,得出结论,该标准不足以作为实际线材消耗的参考,从而给人留下线材消耗量高的印象。建议使用研究中所述方法和线长公式手工计算,将标准与实际验证相一致。关键词:线长、线材、密度、重量、卷筒体积、线材使用情况 1. 简介 引线键合是将芯片连接到条带引线的过程,条带引线在电路板安装时建立从芯片功能到电路板的连接。图 1 显示了引线以及它如何连接芯片和条带的引线。
摘要我们将在LCLS上介绍最近的OPɵCS计量学,以展示X射线opɵc挑战的Mulɵtude,以及我们如何适应我们的乐器挑战。今年,我们在LCLS安装了两个主要的OPɵC系统,即X射线仪器(TXI)的Kirkpatrick-Baez(KB)镜像系统和RIX的Qrix光谱仪的材料科学共振InelasɵCX射线scaʃing。txi是一种独特的实验厨具,因为它旨在同时采用Soō和柔软的X射线,该射线来自LCLS的两个单独的光束线。TXI的KB镜像系统由两对KB镜子组成,即Soō和柔软的X射线对,总共有四个1-M长的镜子。要安装此镜像系统,我们必须在密封镜室之前在同一ɵ师时(大约一个月)中鉴定所有四个镜子。为了效率,我们将镜子和弯曲器成对符合其歌剧Orientaɵon的成对,即朝向和侧面,同时与verɵcal和横向测量。这是通过在最初为长痕量专业仪(LTP)建造的花岗岩龙门系统上添加fizeau干涉仪来实现的。通过此升级,龙门系统现在包含SɵTCHING仪器和LTP。QRIX光谱仪旨在实现多达约50,000个分辨能力,以便我们可以获取高分辨率的RIX数据。它由抛物线镜和一个巨大的,可变的线间距(VLS)graɵng和1500行/mm组成。用Verɵcalsɵtching仪器在其摇篮中测量了抛物线镜。用LTP测量Graɵng。由于测量方法的2D性质,扭曲误差被视为奖励。这也使我们还可以最大程度地减少安装镜中的扭曲误差。然而,该graɵng在底物中具有预先构造的圆柱形形状,因此我们必须首先用LTP测量形状,然后测量liʃrow中的线密度,同时补偿该形状。将在研讨会上讨论测量策略和计量结果。
有几种方法可以质疑物理系统状态的具体量子力学特性。首先,人们可能会问它的相干性有多强。量子态相干叠加的存在是物质波干涉现象的起源,因此,这是一个典型的量子特征,对此提出了几种测量和证据(有关最近的综述,请参阅 [1])。其次,当所研究的系统是二分或多分系统时,其组成部分的纠缠是另一个内在的量子特征。有大量文献探讨了各种测量方法来量化给定状态中包含的纠缠量 [2–14]。最后,对于玻色子量子场的模式,出现了第三种非经典性概念,通常称为光学非经典性。根据格劳伯的观点,光场的相干态(及其混合态)被视为“经典”,因为它们具有正的格劳伯-苏达山 P 函数 [15]。从那时起,多年来人们开发了多种光学非经典性测量方法,以测量与光学经典状态的偏离 [15–41]。光场量子态的这三种不同的、典型的量子属性被认为可作为量子信息或计量学的资源 [38, 39, 42–44]。那么自然而然地就会出现一个问题:这些属性之间有着什么样的定量关系。例如,在 [45] 中,给出了使用非相干操作从具有给定相干度的状态中可以产生多少纠缠的界限:这将相干性与纠缠联系起来。在 [46] 中,状态的相干性和光学非经典性被证明是相互关联的:远对角线密度矩阵元素 ρ ( x, x ′ ) 或 ρ ( p, p ′ ) 的显著值(称为“相干性”)是状态的光学非经典性的见证。我们的目的是建立多模玻色子场的光学非经典性和二分纠缠之间的关系。直观地看,由于所有光学经典态都是可分离的,因此强纠缠态应该是强光学非经典态。相反,仅具有弱光学非经典性的状态不可能高度纠缠。为了使这些陈述精确且定量,我们需要测量纠缠度和光学非经典性。作为评估二分纠缠的自然指标,我们使用形成纠缠 (EoF) [4]。关于光学非经典性,我们使用最近引入的单调性 [38, 39],我们将其称为总噪声单调性 ( M TN )。它是通过将纯态上定义的所谓总噪声∆x2+∆p2扩展到混合态(通过凸屋顶结构,参见(1))得到的,对于该值来说,它是光学非经典性的一个完善的量度[38–41]。我们的第一个主要结果(定理 1 和 1')在于,对于 n = n A + n B 模式的二分系统的任意状态 ρ,EoF(ρ) 关于 M TN (ρ) 的函数有一个上限。特别地,当 n A = n B = n/ 2 时,这个上限意味着包含 m 个纠缠比特的状态必须具有光学非经典性(通过 M TN 测量),并且该光学非经典性随 m 呈指数增长。作为应用,我们表明,当可分离纯态撞击平衡光束分束器时可以产生的最大纠缠度由该状态的光学非经典性的对数所限制,通过 M TN 测量。换句话说,虽然众所周知分束器可以产生纠缠 [28, 47, 48],但纠缠量受到本态光学非经典性程度的严重限制。定理 1 和 1' 中的界限可以很容易地计算出纯态的界限,因为 EoF 与还原态的冯·诺依曼熵相重合,而 M TN 与总噪声相重合。然而,对于混合态,界限与两个通常难以评估的量有关。我们的第二个主要结果(定理 2)解决了这个问题