在过去十年中,沿加利福尼亚海岸进行了许多SLR计划和适应工作,但目前据了解,脆弱性评估,适应计划和沿海弹性项目在整个司法管辖区的标准或标准中并不一致。认识到这些差距以及为SLR做准备的紧迫性,参议院第272号法案(莱尔德,2023年)于2023年签署为法律。SB 272要求所有沿海地政府制定SLR计划,并通过批准的SLR适应资金计划将地方政府优先考虑。随着2034年1月1日的截止日期,这些计划必须纳入当地沿海计划(LCP)或旧金山湾海岸线弹性计划。SB 272还要求OPC与加利福尼亚SLR州和区域支持协作(SLR协作)协调,以建立准备SLR计划的准则。
尽管缺口和裂纹在工程应用中无处不在,但它们仍然对准确的故障预测构成挑战。对于许多实际应用,希望有一种简单而可靠的方法,使用简单的线弹性有限元模拟和粗网格来局部预测任意形状的缺口和裂纹部件的故障。实现这一目标的众多方法中的两种是临界距离理论 (TCD) [ 2 ] 和平均应变能密度 (ASED) [ 1 ] 标准。虽然后者已广泛应用于传统材料,但它在增材制造领域的局限性仍未得到充分探索 [ 3 ]。增材制造具有许多潜在的优势和用例,例如快速成型、复杂拓扑优化和大规模减重,涉及从医学到航空工程等许多学科,显然需要深入了解增材制造,以弥合其能力与当前工业应用之间的巨大差距。增材制造的概念
术语:a cz ,粘结区长度;D c ,循环损伤;D s ,静态损伤;E ,弹性模量;K coh ,粘结刚度;G c ,单位面积总耗散能量;G p ,单位面积粘结区耗散塑性能量;N ,循环次数;N f ,粘结单元失效的循环次数;Δ N ,荷载包络线内的循环次数;N u ,所需的损伤更新次数;Γ o ,临界粘结能;δ c ,临界分离;δ 1 ,线性和梯形模型的形状参数;δ 2 ,梯形模型的第二个形状参数;δ p ,塑性分离;δ cyc ,循环分离;δ cyc max ,加载循环中达到的最大分离;δ ,CE 中的分离; δ max ,卸载开始时的分离;σ c ,临界内聚应力;σ ,内聚应力;σ Y ,屈服应力;σ max ,卸载开始时的应力;ϑ ,泊松比 缩写:CE,内聚元素;CZ,内聚区;CZM,内聚区模型;LEFM,线弹性断裂力学;TCZM,梯形内聚区模型;TSL,牵引分离定律