Anderson定位是在无序介质中传播的线性波的多散射现象。在50年代后期发现的电子,此后已通过冷原子和经典波(光学,微波和声学)在实验中观察到它,但是对于非线性波而言,波浪局部是否会增强或削弱,这是一项长期的争论。在这里,我们表明非线性加强了在随机底部传播的运河中表面重力波的定位。我们还通过实验表明定位长度如何取决于非线性,而非线性以前从未用任何类型的波浪进行过报道。为此,我们使用完整的空间和时间分辨波场测量以及数值模拟。还报道了该疾病水平的影响和系统的限制大小对定位的量。我们还强调了布洛赫(Bloch)在周期性测深图上线性流体动力表面波的分散性关系的宏观分散关系的第一个实验证据。
在这里,我们证明了半线性波方程解的全球存在定理,具有批判性的非线性,承认有肯定的哈密顿量。在全球双曲线弯曲的时空中为波方程制定了一个参数,我们将Apriori在非线性波方程的溶液中以最初的能量为单位,从而以直接的方式遵循全局存在。这是通过两个步骤完成的。首先,基于Moncrief的光锥制剂,我们根据过去的光锥从任意时空点到“初始”,Cauchy hypersurface和该锥体与初始hypersurface的相交的“初始cauchy hypersurface”,从过去的光锥上呈现标量的表达。其次,我们获得了与三个准局部相关时间样的保形杀害和一个近似杀伤载体场相关的能量的先验估计。利用这些与物理应力 - 能量张量和积分方程相关的自然定义的能量,我们表明,标量场的时空L∞规范在初始数据方面保持界定,并且只要空间时空保持奇异/cauchy-horizon notimulition/cauchy-horizon nove the the n of tim to n of。
摘要:我们提出了一种基于非线性多谐振光学器件的片上陀螺仪,该器件位于薄膜𝜒 (2) 谐振器中,同时兼具高灵敏度、紧凑外形和低功耗。我们从理论上分析了一种新颖的整体度量标准——多谐振非线性光子腔的 Fisher 信息容量,以充分表征我们的陀螺仪在基本量子噪声条件下的灵敏度。利用贝叶斯优化技术,我们直接最大化非线性多谐振 Fisher 信息。我们的整体优化方法协调了多种物理现象的和谐融合——包括噪声压缩、非线性波混频、非线性临界耦合和非惯性信号——所有这些都封装在单个传感器谐振器中,从而显著提高了灵敏度。我们表明,与具有相同占地面积、内在品质因数和功率预算的散粒噪声受限线性陀螺仪相比,可以实现约 470 × 的改进。
摘要:我们在薄膜𝜒(2)谐振器中基于非线性多辅音光学元件提出了一个片上陀螺仪,该光学具有同时结合了高灵敏度,紧凑的外形和低功率消耗的谐振器。我们理论上分析了一种新型的整体度量 - 多种非线性光子腔的Fisher信息能力 - 以充分表征我们陀螺仪在娱乐性量子噪声条件下的灵敏度。利用贝叶斯优化技术,我们直接最大化了非线性多辅助渔民信息。我们的整体选择方法策划了多种物理现象的和谐融合,包括噪声挤压,非线性波混合,非线性临界耦合和非稳态信号,都封装在单个传感器谐波中,从而显着增强敏感性。我们表明,与射击有限的线性陀螺仪具有相同的占地面积,固有质量因素和功率预算相比,可以进行约470倍的改进。
我们对气体稀薄对共振平面非线性声波能量动力学的影响进行了数值研究。问题设置是一个充满气体的绝热管,一端由以管的基本共振频率振动的活塞激发,另一端封闭;非线性波逐渐陡化,直到达到极限环,在足够高的密度下形成激波。克努森数(这里定义为特征分子碰撞时间尺度与共振周期之比)通过改变气体的基准密度在 Kn = 10 − 1 − 10 − 5 范围内变化,从稀薄状态到密集状态。工作流体为氩气。用 Bhatnagar-Gross-Krook (BGK) 模型封闭的玻尔兹曼方程的数值解用于模拟 Kn ≥ 0.01 的情况。对于 Kn < 0 . 01 ,使用完全可压缩的一维 Navier-Stokes 方程和自适应网格细化 (AMR) 来解析共振弱冲击波,波马赫数高达 1.01 。非线性波陡化和冲击波形成与波数-频率域中声能的频谱展宽有关;后者是根据 Gupta 和 Scalo 在 Phys. Rev. E 98, 033117 (2018) 中得出的二阶非线性声学的精确能量推论定义的,代表系统的 Lyapunov 函数。在极限环处,声能谱表现出惯性范围内斜率为 −2 的平衡能量级联,同一作者在自由衰减的非线性声波中也观察到了这种现象。在本系统中,能量在低波数/频率时通过活塞从外部引入,在高波数/频率时由热粘性耗散平衡,导致系统基准温度升高。热粘性耗散率在基于最大速度振幅的固定雷诺数下按 Kn 2 缩放,即随流动稀疏程度而增加;一致地,极限环处陡峭波的最小长度尺度(对应于冲击波(存在时)的厚度)也随 Kn 而增加。对于给定的固定活塞速度振幅,光谱能量级联的惯性范围的带宽随克努森数的增加而减小,导致系统的共振响应降低。通过利用柯尔莫哥洛夫流体动力学湍流理论中的无量纲缩放定律,结果表明,基于域内最大声速幅,可以预期声学雷诺数 Re U max > 100 的谱能量传递惯性范围。
摘要:我们在薄膜𝜒(2)谐振器中基于非线性多辅音光学元件提出了一个片上陀螺仪,该光学具有同时结合了高灵敏度,紧凑的外形和低功率消耗的谐振器。我们理论上分析了一种新型的整体度量 - 多种非线性光子腔的Fisher信息能力 - 以充分表征我们陀螺仪在娱乐性量子噪声条件下的灵敏度。利用贝叶斯优化技术,我们直接最大化了非线性多辅助渔民信息。我们的整体选择方法策划了多种物理现象的和谐融合,包括噪声挤压,非线性波混合,非线性临界耦合和非稳态信号,都封装在单个传感器谐波中,从而显着增强敏感性。我们表明,与射击有限的线性陀螺仪具有相同的占地面积,固有质量因素和功率预算相比,可以进行约470倍的改进。
孤子是局部非线性波,可以像粒子一样传播和相互作用。理论研究表明,水波、光纤中的光脉冲、超导设备中的磁通量子和生物分子的相干激发等现象都可以是孤子。计算机模拟表明,在存在摩擦损耗机制、外部驱动力和热涨落等现实特征的情况下,可以形成孤子。孤子在这些情况下将存在足够长的时间,以至于成为波激发时间演化的重要特征。但孤子动力学的实验演示仍然很少。因此,最值得注意的是,Fujimaki, Nakajima 和 Sawada 1 以及 Wu, Wheatley, Putterman 和 Rudnick 2 最近发表的两篇展示真实系统中孤子的论文。Fujimaki 等人的工作。处理电子约瑟夫森传输线 (JTL) 上的孤子碰撞,该传输线长 1.8 毫米,由一系列 31 个离散约瑟夫森结(交错的超导层和绝缘层)组成。在 JTL 的连续版本中,约瑟夫森效应(超导电子穿过绝缘层)是由超导薄膜对之间的弱耦合引起的。这种重叠几何形状由粒子物理学家最初开发的正弦-戈登方程非常精确地建模。1962 年,Perring 和 Skyrme 证明这个非线性偏微分方程具有他们称之为“扭结”和“反扭结”的解,之后
测量机械量 (U) Dir 和 Prof. Dr.-Ing。R. Schwartz 材料强度 (FH) 工程博士。D. Röske 信息与编码理论 (FH) 教授、博士F. Jäger 电气工程基础知识 (S) A. Eggestein 电气工程基础知识 (S) A. Eggestein 电气工程基础知识 (S) A. Eggestein 结构声 (FH) 教授、博士工程师。W. Scholl 波在 Kontinna (U) Dr. 中的传播M. Schmelzer 计量学基础 2 (U) PD 博士U. Siegner 高频和移动无线电测量技术 (U) Dr. T. Kleine-Ostmann 单电子隧道 (U) F. Maibaum 现代存储技术 (U) Dr. M. F. Beug 现代力、质量及其衍生量的测量 (MKM) (U) Prof. Dr.-Ing。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。分析化学 (MDC) 夏季测量数据评估和测量不确定度 (U) 教授、博士工程师。K.-D。夏季防火装置 - 研讨会“Tank Reversion AI - AIII + B”(S) Dr. D.-H- Frobese 防火装置 - 研讨会“Tank Reversion AI - AIII + B”(S) Dr. D.-H- Frobese VDI 知识论坛“处理易燃液体和气体时的防爆”(S) Dr. H. Bothe 工艺和工厂安全 (U) 总监和 U. Klausmeyer 教授“本质安全”保护类型 (FH) Dr.-Ing 的基础知识。U. Johannsmeyer Exi 现场总线模型 (FH) Dr.-Ing.U. Johannsmeyer 具有本质安全电路的系统 - 基础知识和构造要求 (A) Dr.-Ing.U. Johannsmeyer 电气驱动(机械工程系)(U) Dr.-Ing。C. Lehrmann Electrical Drives(机械工程系)() 工程博士。C. Lehrmann 防爆“电气系统”() Dr.-Ing。C. Lehrmann 防爆设备 () Dr.-Ing。M. Beyer 固态激光器 - 光谱基础知识和特性 (U) PD Dr. S. Kück 量子光学 (U) 教授、博士邮政信箱施密特相干光学 (U) 教授、博士邮政信箱施密特量子光学 (U) 教授、博士邮政信箱施密特量子逻辑和捕获离子精密光谱学 (S) 教授、博士邮政信箱Schmidt 材料技术的环境问题 I 和 II (U) 教授、博士、工程师。F. Löffler 技术交流 (FH) 教授、博士、工程师。Lederer 流体测量技术 (U) Dr.F. Löffler DoReMi 课程“跨学科辐射研究”:微剂量学 (S) Dr. H. Rabus Walther Bothe:巧合法 (U ) Dr. H. Rabus KIT 专家活动“微剂量和纳剂量测定的蒙特卡罗模拟”(U) Dr. H. Rabus DoReMi 课程“跨学科辐射研究”:纳米剂量学 (S) Dr. H. Nettelbeck 同步加速器辐射和 X 射线激光的定量实验 (U) 教授、博士M. Richter 同步加速器辐射和 X 射线激光的定量实验 (U) 教授、博士M. Richter 物理学分析方法精选 (U) Dr. B. Beckhoff 物理分析方法精选 (U) Dr. B. Beckhoff 温度过程技术基础 (S) Dr. J. Fischer 热电偶测温 (S) Dr. F. Edler 噪声测温 (S) Dr. F. Edler 电气工程课程 (FH) Dr. E. Lenz 不可逆热力学 (U) 教授、博士P. Strehlow 统计热力学 (U) 教授、博士P. Strehlow 流体测量技术 (U) Dr.Lederer 活性介质中的非线性波 (U) Dr. M. Bär 活性介质中的非线性波 (U) Dr. M. Bär 讲座“开源软件的科学工作”(U)Prof. Dr. H·科赫
Name: Dr. Ronald Gamble Code: 660 Home institution: NASA Goddard Space Flight Center/University of Maryland College Park Name of task: Cosmic Origins Role in task/ what they do for CRESST: As Cosmic Origins Research Scientist within the Cosmic Origins program, my role is to support the scientific initiatives and public-facing interactions of the office and the Cosmic Origins Program Analysis Group (COPAG).我的任务是支持未来的NASA任务进行科学发现,并向NASA天体物理学社区进行更新。作为宇宙探索者计划的主任,我领导了努力,这些努力参与并支持天文学和物理社区的早期职业成员的专业发展。背景/自传?我的学术旅程始于学士学位物理学和北卡罗来纳州农业技术州立大学的美术未成年人。我继续获得硕士学位在实验性高温超导性中和博士学位。在理论上的天体物理学中,关于“重力辐射:粘弹性kerrlambda时空中的非线性波理论”主题。在北卡罗来纳州农业技术州立大学时,我获得了HBGI博士学位奖学金,并完成了该机构的第一个相关论文。在NC A&T期间,我在物理,化学,生物医学和生物部门中创建了六个新课程。在NC A&T教授七年后,与研究生和博士后职位同时,我成为国防威胁降低机构核技术效果R&D部门的理论和数学物理学的博士后研究员。I然后加入了马里兰州大学的克雷斯特二世(Cresst II),即2021年8月,在NASA GSFC的研究科学家,后来是2022年春季的宇宙起源。成为一名CRESST科学家最喜欢的部分?成为一名CRESST科学家的绝对最喜欢的部分是最终在我梦dream以求的工作和职业中工作的机会。我还可以激发学生在支持他们的专业发展之外的同样的愿望。我每天都可以学习黑洞和类星体,同时在NASA内创造新的机会,以使学生更容易从事这一职业领域。这是科学的沟通,研究和计划开发。研究的亮点是克雷斯特科学家?我目前的研究重点是得出相对论喷射发射和粒子加速机制的数学和计算模型,