研究了影响切割蚂蚁对高温的容忍度的生理和环境因素(体型,脱水,暴露时间),以了解这些动物如何整合生理和行为线索,以应对气候变化所带来的挑战。
能量是我们生活的重要组成部分,它使事情起作用。炊具,灯光,手机,汽车,甚至是制造衣服的缝纫机;所有这些东西都是由能量提供动力的。但是我们的精力从何而来?下面的图片将为您提供一些线索。
众所周知,不仅视觉,其他感官方式也会影响驾驶员对车辆的控制,并且驾驶员会随着时间的推移适应感官线索的持续变化(例如在驾驶模拟器中),但这些行为现象背后的机制尚不清楚。在这里,我们考虑了现有文献中关于前庭线索缩小如何影响障碍滑雪任务中的驾驶员转向,并首次提出了一个驾驶员行为的计算模型,该模型可以基于神经生物学上合理的机制来解释经验观察到的影响,即:在初始接触期间任务表现下降和转向力度增加,然后随着任务接触时间的延长,这些影响会部分逆转。出乎意料的是,该模型还重现了另一个以前无法解释的经验发现:运动缩小的局部最优,其中路径跟踪比一对一运动线索可用时更好。总体而言,我们的研究结果表明:(1)驾驶员直接利用前庭信息来确定适当的转向动作,(2)运动降尺度会导致偏航率低估现象,驾驶员的行为就好像模拟车辆的旋转速度比实际速度慢一样。然而,(3)在障碍滑雪任务中,一定程度的低估会带来路径跟踪性能优势。此外,(4)模拟障碍滑雪驾驶任务中的行为适应可能发生在
感知虚拟对象的空间信息(例如,方向,距离)对于寻求不可思议的虚拟现实(VR)体验的盲人用户至关重要。为了促进盲人用户的VR访问权限,在本文中,我们研究了两种类型的触觉提示(多余的提示和皮肤伸展线索)在传达虚拟物体的空间信息时,当应用于盲人手的背侧时。我们与10个盲人用户进行了一项用户研究,以调查他们如何使用定制的触觉机构在VR中感知静态和移动对象。我们的结果表明,盲人用户可以在接收皮肤拉伸线索时更准确地理解对象的位置和移动,这是对纤维曲折提示的。我们讨论了两种类型的触觉提示的利弊,并以设计建议的设计建议,以实现VR可访问性的未来触觉解决方案。
摘要 源自人类多能干细胞的脑类器官这一新兴技术为研究人脑发育及相关疾病提供了前所未有的机会。人们已开发出各种脑类器官方案,这些方案可以重现发育中人脑的细胞类型多样性、细胞结构组织、发育过程、功能和病理的一些关键特征。在这篇综述中,我们重点介绍人类干细胞衍生的脑类器官的模式化。我们首先概述了生成脑类器官的一般程序。然后,我们重点介绍了一些最近开发的脑类器官方案和化学线索,这些方案和线索涉及模拟特定人脑区域、亚区域和多个区域共同发育。我们还讨论了人脑类器官技术的局限性和未来潜在的改进。
我给你一个线索,他们开发了一种全新的阴极材料。现在我再给你一个线索。如果你去 Lyten 主页 2 ,该页面上的第一行文字是:“Lyten 是一家先进材料公司,开发了 Lyten 3D Graphene ®,这是一个获得专利的材料库,它推动了储能、复合系统以及化学和无源传感器领域的突破。Lyten 的原始三维石墨烯材料极大地改善了其他材料的特性,当配制成我们先进的电池化学成分时,可通过 Sulfur-Caging™ 释放 Li-S 储能的真正潜力。用于电动汽车的 Lyten 电池可提供更高的能量密度,从而延长行驶里程、加快充电速度、大大提高安全性,并且碳足迹是所有电池中最低的……
有时艺术家想展示的是自己想象中的事物,而不是现实生活中的物品,就像这里的几件韩少芙雕塑一样。然而,我们可以从其形式中寻找线索,了解她想要表达的意思。
帮助找到大多数患有唐氏综合症的人的治疗方法,到40岁时,他们的大脑变化并在50岁以后出现记忆问题。帮助解锁可能导致我们更接近治疗的线索。
人工智能已成为日常生活中司空见惯的事情。通过网络获取信息、消费新闻和娱乐、金融市场的表现、监控系统识别个人的方式、驾驶员和行人如何导航以及公民如何领取福利金,这些只是人工智能渗透到人类生活、社会机构、文化实践以及政治和经济进程中的无数例子。用于实现人工智能的算法技术的影响是深远的,激发了相当多的时代炒作和希望,以及反乌托邦的恐惧,尽管它们在技术专家的社交网络之外仍然很大程度上不透明且理解甚少(Rieder 2020)。然而,人工智能的深刻社会和伦理影响正变得越来越明显,并成为人们关注的重要对象。人工智能是争议的焦点,例如,工作场所和公共服务的自动化;算法形式的偏见和歧视;不平等和劣势的自动再现;以数据为中心的监视和算法分析制度;无视数据保护和隐私;政治和商业微目标定位;以及科技公司控制和塑造其渗透的所有部门和空间的权力,从整个城市和公民群体到特定的集体、个人甚至人体(Whittaker 等人,2018 年)。已经制定了许多道德框架和专业行为准则,试图减轻人工智能在社会中的潜在危险和风险,尽管关于它们对公司的具体影响或这些框架和准则如何保护商业利益的重要争论仍然存在(Greene、Hofferman 和 Stark,2019 年)。目前,人工智能在网络、智能手机、社交媒体和通过互联物体和传感器网络在空间中的实例化的历史比最近一些划时代的说法所暗示的要长得多。人工智能的历史至少可以追溯到 20 世纪 40 年代计算机科学和控制论的诞生。 “人工智能”这一术语本身是在 20 世纪 50 年代中期达特茅斯学院的一个项目和研讨会中提出的。从 20 世纪 60 年代到 90 年代,人工智能经历了一段“寒冬”,其研究和开发首先侧重于对人类推理的编码原理进行模拟,然后侧重于“专家系统”,即基于定义的知识库模拟专家的程序性决策过程。2010 年之后,人工智能逐渐以一种新范式回归,不再是模拟人类智能或可编程专家系统,而是能够通过对大量“大数据”进行分类和关联来学习和做出预测的数据处理系统。计算过程包括数据分析、机器学习、神经网络、深度学习和强化学习是大多数当代人工智能的基础。人工智能可能只是一系列统计、数学、计算和数据科学实践和发展的新的总称,它们各自都有复杂且相互交织的谱系,但它也标志着这些历史脉络的独特联系(Schmidhuber 2019 , 2020 )。现代人工智能的重点不是创造计算“超级智能”(“强人工智能”),而是理想情况下致力于开发能够从自身经验中学习、适应变化的机器。
DeepMind 团队于2020 年12 月发布的一种人工智能蛋白质结构预测算法AlphaFold2,被 认为具有人工智能领域里程碑性意义,解决了生物学界长达50 年的蛋白质空间结构预测 难题,改变了此前几乎只能使用X 射线晶体学和冷冻电子显微镜等实验技术确定蛋白质结 构的现状。它的原理基于最先进的深度学习算法以及进化中蛋白质结构的守恒。它使用了 大量的蛋白质序列和结构数据进行训练(如MGnify 和UniRef90 数据库、 BFD 数据库), 并 使用了一个新的深度神经网络构架,该网络被训练为通过利用同源蛋白质和多序列比 对的信息从氨基酸序列生成蛋白质结构。 DeepMind 公司与欧洲生物信息研究所(EMBL-EBI) 的合作团队已经使用AlphaFold2 成功预测出超过100 万个物种的2.14 亿个蛋白质结构, 几乎涵盖了地球上所有已知蛋白质。这一成果标志着AlphaFold2 在结构生物学领域的突 破,因为这些预测结果中有大约35%的结构具有高精度,达到了实验手段获取的结构精度, 而大约80%的结构可靠性足以用于多项后续分析。这将有助于深入理解蛋白质的结构和功 能,为生命科学领域的研究提供更多的线索和解决方案。 AlphaFold2 应用范围广泛,未来 可能被应用于结构生物学、药物发现、蛋白质设计、靶点预测、蛋白质功能预测、蛋白质 -蛋白质相互作用、生物学作用机制等。