摘要:栽培番茄(Solanum lycopersicum)是世界上经济价值最高、种植最广泛的蔬菜作物之一。然而,番茄植株经常受到生物和非生物胁迫的影响,从而降低产量并影响果实品质。栽培番茄的表型多样性很明显,特别是园艺性状,但遗传多样性相当狭窄。针对病毒、真菌、细菌和线虫等不同病原体的主要抗病基因主要来自野生番茄品种,并渗入栽培番茄中。在这里,我们列出了在 S. pimpinellifolium、S. habrochaites、S. peruvianum、S. chilense、S. pennellii、S. galapagense、S. arcanum 和 S. neorickii 中发现的主要病虫害抗性基因,并展望了当前对番茄野生近缘种的了解与所需了解之间的差距。
多年生黑麦草内生菌是一种微小的真菌,生活在植物内,但肉眼看不到。感染了内生素的黑麦草显示出改善的幼苗建立,增加的草药产量和持久性的增加。这是由于产生化学物质的内生植物所致,从而阻止许多虫害(象鼻虫,根蚜虫,线虫,鸡斗,黑色田地板球和毛毛虫型害虫)。在某些季节性和放牧条件下,天然存在的内生植物(野生类型)产生的一些生物碱也可能对库存有毒,并可能导致称为Ryegrass Staggers的疾病。3个牲畜在夏末或秋季秋末放牧多年生黑麦草,偶尔会发展起来,但发生的情况很大。低毒性,可感染内生菌的种子可以减少黑麦草staggers的影响。
材料/方法 使用测序法 (GBS) 对 159 株阿拉比卡咖啡植物进行基因分型,这些植物大部分来自粮农组织收藏 (FAO 1964)。与阿拉比卡咖啡 Et039 (SALOJÄRVI, 2021) 的参考基因组进行比对,以识别 SNP。在温室条件下接种了 M. incognita 的卵和 J1 阶段的植物中进行表型分析。对于每种基因型,使用繁殖因子、每克根的线虫数量、宿主易感性指数和 Oostenbrink 指数评估了 8 到 12 株植物。使用 R 软件中的 mrMLM.GUI 包 (WANG et al., 2016) 和 GAPIT3 (WANG et al., 2021),使用多位点模型进行基因型和表型数据之间的关联。
先前的研究表明,线粒体不仅在癌细胞(CSC)代谢中起核心作用,而且在CSC干性维持和分化的调节中起着核心作用,这是癌症进展和治疗性抗性的关键调节剂。因此,预计CSC中线虫的调节机制的深入研究有望为癌症治疗提供新的靶标。本文主要介绍线粒体及其相关机制在CSC Stemness维持,代谢转化和化学上的作用。讨论主要关注以下方面:线粒体形态结构,亚细胞定位,线粒体DNA,线粒体代谢和线粒体。手稿还描述了针对线粒体靶向药物的最新临床研究进展,并讨论了其目标策略的基本原理。的确,了解线粒体在CSC规范中的应用将促进新型CSC靶向策略的发展,从而显着提高癌症患者的长期存活率。
医学遗传学的一个基本问题是遗传背景如何改变突变的表型结果。我们通过关注线虫表皮中表现出干细胞特性的接缝细胞来解决这个问题。我们证明,与接缝细胞命运维持有关的 GATA 转录因子 egl-18 的假定无效突变在夏威夷的 CB4856 分离株中比在布里斯托尔的实验室参考菌株 N2 中更耐受。我们确定了两个分离株之间表型表现力差异的多个数量性状基因座 (QTL)。这些 QTL 揭示了通过增强 Wnt 信号传导来强化接缝细胞命运的隐秘遗传变异。在一个 QTL 区域内,CB4856 中的热休克蛋白 HSP-110 中的单个氨基酸缺失足以改变 Wnt 信号传导和接缝细胞发育,强调保守的热休克蛋白的自然变异可以塑造表型表现力。
基因驱动技术由新的基因工程工具 CRISPR/Cas9 实现,旨在对野生种群或整个物种进行基因改造、替换或消灭。到目前为止,该技术已被证明对蚊子、老鼠、苍蝇、酵母和线虫有效。但原则上,它可以用于对任何有性生殖生物进行基因改造。基因驱动生物 (GDO) 旨在与野生同类交配,并将其改造的基因 100% 传播给其后代。这种强制遗传模式绕过了自然界正常的遗传规则。它会引发基因链式反应,其中基因工程工具 CRISPR/Cas9 以及有时是额外的新基因会代代相传。基因驱动引起的遗传变化可能导致其后代不育或性别比例改变,从而导致其种群崩溃。1 预计在不久的将来将进行自然界的首次田间试验。
尽管农业微生物学是土壤科学的一个相对较新的分支,但它已成为一种潜在的非常有用和独特的科学学科,尤其是在农场阵线当前能源限制的背景下。Microorganisms have relevance to agriculture in several ways—in biological nitrogen fixation, in human food and animal feed as single cell protein, as agents of insect pest control, as a source of fuel and energy, as a means to treat sewage, in converting cellulose or sugarcane juice into power alcohol, in producing new antibiotics which can control plant diseases, in gen- erating methane or biogas, in mobilizing磷通过内部和欧洲膜的植物等植物等。实际上,生物转化的整个概念基于微生物分解木质纤维素的能力。从苏云金芽孢杆菌的成功使用细菌杀虫剂开始,能够杀死许多鳞翅目的虫害作物的虫害,在欧洲和美国成功地制造了一系列真菌,细菌,原生动物和病毒性疾病。即使线虫控制也通过线虫诱捕真菌设想。使用微生物在抗击植物害虫中的使用是无污染的,实际上,目前,通过使用拮抗微生物,某些土壤传播疾病是通过生物学来控制的。同样,在日本常规诉诸于日本的商业准备的抗生素以控制植物的空中疾病。基因工程可以使用改善菌株对微生物过程的不断改进。在能源方面,巴西通过将其用甘蔗汁与乙醇生成的电力酒精替代,将汽车中汽油中的汽油的使用减少了10%。通过酶促的生物量利用 - 自然的巨大可再生木质纤维素的巨大储藏量被认为是非可再生化石燃料的可行替代品。微生物的快速生成时间以及可以处理其核材料的便利性,使它们非常适合“量身定制”它们,以产生所需的产品以服务人类。实际上,这是这种微生物“细胞能力”,目前由发达的伙伴中生物技术学家目前正在利用以生产胰岛素和干扰素。在未来的几年中,这个“单元力”
microRNA是小型非编码RNA,在转录后调节质量RNA的表达水平,从而控制局部蛋白质表达,这对于神经元等偏振细胞很重要。他们最初是在秀丽隐杆线虫(Caenorhabditis elegrans)中发现的,这是一种公认的多功能线虫模型生物体,是发育时机中的关键调节剂。由于模型和哺乳动物之间基因的高保守性,在其他物种中也发现了这些miRNA。此外,由于1993年对miRNA LIN-4的里程碑发现,已经确定了250多个内源性microRNA,以及许多功能。这些小的RNA已经参与了不同多系统水平的过程,因此以多种方式影响神经元功能。但是,在实验上只有一个特定的特定证明与秀丽隐杆线虫中的神经功能有关,尤其是Lin-4,Let-7,miR-1,miR-1,miR-273,miR-84和miR-29。在这篇综述中,我们将通过介绍和假设其在秀丽隐杆线虫神经系统中的功能来探索各种miRNA。
摘要:我们以前已经报道了从越南作物植物中分离出的59种内孢子粒阳性细菌菌株的基因组序列草案,因为它们能够抑制植物病原体。基于其基因组序列草案,其中11项被分配给Brevibacillus,一个分配给了莱西比氏菌属。进一步的分析(包括完整的基因组测序)表明,其中几种菌株代表了新型基因组菌。体外和体内测定表明了它们促进植物生长的能力,以及针对植物病原细菌,真菌和线虫的Brevibacilli的强生生物防治潜力。基因组开采鉴定的157天然产物生物合成基因簇(BGC),包括Mibig数据库中不存在的36种新型BGC。我们的发现表明与植物相关的Brevibacilli是推定抗菌化合物的丰富来源,并且可能是开发新型生物防治剂的宝贵起点。
摘要 生物体某一分支中某一性状的快速进化可以用自然选择的持续作用或高突变方差(即在自发突变下发生变化的倾向)来解释。高突变方差的原因仍然难以捉摸。在某些情况下,快速进化取决于一个或几个具有短串联重复序列的基因座的高突变率。在这里,我们报告了隐杆线虫外阴前体细胞中进化最快的细胞命运,即 P3.p。我们识别并验证了 P3.p 高突变方差的因果突变。我们发现这些位置不表现出任何高突变率的特征,分散在整个基因组中,相应的基因属于不同的生物途径。我们的数据表明,广泛的突变靶标大小是高突变方差和相应的快速表型进化率的原因。