这项工作得到了内蒙古自治区的自然科学基金会项目(编号2019MS08024)抽象非小细胞肺癌(NSCLC是最常见的组织学肺癌类型,在诊断时约有66%的患者中与远处转移有关。大脑是转移的常见部位,在初始诊断时,大约13%的患者在颅内受累。这严重影响了生活质量,并导致预后不良。驱动基因阳性NSCLC脑转移患者的靶向治疗可实现更好的颅内控制率;但是,使用驱动基因阴性NSCLC脑转移的患者的治疗选择有限。近年来,随着免疫疗法的扩展,免疫检查点抑制剂(ICI)已被广泛用于临床实践。ICI与放射疗法结合的治疗方式在治疗驱动基因阴性NSCLC脑转移的患者方面有望。本文回顾了敏感驱动器基因阴性NSCLC脑转移患者的放射治疗与免疫疗法的临床研究进度,目的是为可用的临床治疗方案提供参考。
大脑由复杂的神经元和连接网络组成,类似于人工网络的节点和边缘。对大脑接线图进行网络分析可以深入了解大脑如何支持计算并调节感知和行为背后的信息流。成年苍蝇第一个全脑连接组已经完成,其中包含超过 130,000 个神经元和数百万个突触连接 1–3 ,这为分析完整大脑的统计特性和拓扑特征提供了机会。在这里,我们计算了二节点和三节点基序的普遍性,检查了它们的强度,将这些信息与神经递质组成和细胞类型注释联系起来 4,5 ,并将这些指标与其他动物的接线图进行了比较。我们发现苍蝇大脑网络显示出富俱乐部组织,具有大量(连接组的 30%)高度连接的神经元。我们确定了富俱乐部神经元的子集,它们可能充当信号的整合器或广播器。最后,我们检查了基于 78 个解剖定义的大脑区域或神经纤维的子网络。这些数据产品在 FlyWire Codex (https://codex.flywire.ai) 中共享,应作为探索神经活动与解剖结构之间关系的模型和实验的基础。
神经系统和神经发育疾病是主要的公共卫生问题,迫切需要新的治疗方法。有效疗法的开发依赖于对与行为产生因果关系有关的神经基质的精确映射。目前,在清醒手术中的认知和神经监测期间进行的直接电刺激 (DES) 被认为是脑功能因果映射的黄金标准。然而,DES 受到刺激部位局部性的限制,阻碍了在网络层面上对人类大脑功能的真正整体探索。我们使用了来自 612 名胶质瘤患者的 4137 个 DES 点,结合人类连接组数据(静息态功能 MRI,n = 1000 和扩散加权成像,n = 284),以提供对包含 12 个不同行为域的因果宏观功能网络的多模态描述。为了探究我们程序的有效性,我们 (i) 比较了健康和临床人群的网络拓扑图;(ii) 测试了 DES 衍生网络的预测能力; (iii) 量化结构和功能连接之间的耦合;(iv) 建立一个多变量模型,能够量化单个受试者与规范人群的偏差。最后,我们通过测试 DES 衍生的功能网络在识别与术后语言缺陷相关的关键神经调节靶点和神经基质方面的特异性和敏感性,探究了 DES 衍生的功能网络的转化潜力。与单独使用 DES 相比,DES 和人类连接组数据的组合导致全脑覆盖率平均增加 29.4 倍。DES 衍生的功能网络可以预测未来的刺激点(准确率为 97.8%),并得到皮层下刺激的解剖连接的强烈支持。我们没有观察到患者和健康人群在群体和单个受试者层面上存在任何显著的拓扑差异。通过展示具体的临床应用,我们发现 DES 衍生的功能网络与多个功能域中的有效神经调节目标重叠,在使用不同刺激技术的颅内刺激点进行测试时表现出高度特异性,并且可以有效地用于表征术后行为缺陷。DES 与人类连接组的整合从根本上提高了 DES 或单独功能成像提供的功能映射的质量。DES 衍生的功能网络可以可靠地预测未来的刺激点,与底层白质具有很强的对应性,并且可以用于患者特定的功能映射。可能的应用范围从精神病学和神经病学到神经心理学、神经外科和神经康复。
测量体内产生的有机化合物水平,作为许多重要的生化途径的一部分。特定途径中的缺陷可能导致其副产品的积累或降低水平。因此,测量这些标记的水平可以帮助识别哪些代谢过程被阻止或损害。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
使用自私遗传元件(SGE)抽象的拮抗剂进化可以推动宿主抗性的进化。在这里,我们研究了宿主抑制2微米(2 m)质粒,质质寄生虫,它们与萌芽的酵母菌共同发展。我们开发了SCAMPR(用于测量质粒保留的单细胞测定),以测量活细胞中拷贝数异质性和2 m质粒损失。我们确定了缺乏内源性2 M质粒并可重复抑制有丝分裂质粒稳定性的三种酿酒酵母菌株。着眼于Y9 Ragi菌株,我们确定质粒限制是可遗传的和占主导地位的。使用大量分离分析,我们确定了一个高置信度定量特质基因座(QTL),其单个变体MMS21与增加2 m的不稳定性相关。MMS21编码SMC5/6复合物的SUMO E3连接酶和一个重要组成部分,涉及姐妹染色单体内聚,染色体分离和DNA修复。我们的分析利用自然变异来揭示出一种新颖的手段,萌芽的酵母可以克服非常成功的遗传寄生虫。
G蛋白偶联受体(GPCR)家族的μ阿片受体(μor)是阿片类镇痛药的分子靶标,例如吗啡和芬太尼。由于当前可用的阿片类药物的局限性和严重副作用,因此对开发新型μOR功能调节剂的兴趣很大。当今的大多数GPCR配体都是小分子,但是包括抗体和纳米体在内的生物制剂都在成为具有明显优势(例如亲和力和目标选择性)的替代疗法。在这里,我们描述了纳米型NBE,它有选择地结合μor并充当拮抗剂。我们在功能上将NBE表征为细胞外和遗传编码的配体,并通过求解NBE-µOR复合物的冷冻EM结构来揭示μor拮抗的分子基础。nbe显示出独特的配体结合模式,并通过与直角口袋和细胞外受体环的相互作用来实现μor选择性。基于由NBE组成的β-发pin回路,该环将深深插入µOR和最具结合的接触中,我们设计了保留μor拮抗作用的短肽类似物。这项工作说明了纳米构造与GPCR唯一互动的潜力,并描述了可以作为治疗性发展的基础的新型μor配体。
摘要:几乎所有的脑细胞都含有原发性纤毛,触角样微管感觉细胞器,它们在其表面上起着至关重要的作用。在神经发育阶段,纤毛对于大脑形成和成熟至关重要。在成人大脑中,纤毛作为接收和传递各种信号并调节细胞间通信的信号枢纽的重要作用。这些独特的作用表明纤毛的功能以及可能在整个人类寿命中发生变化。为了进一步了解纤毛角色的年龄依赖性变化,我们识别并分析了整个人类寿命中纤毛结构和功能成分表达的年龄依赖性模式。,我们从勃雷恩斯潘潘特(Brainspan Atlas)获得了16个大脑区域的纤毛转录组数据,并通过计算回归系数,使用线性回归模型分析了年龄依赖性的表达模式。我们发现,在至少一个大脑区域中,有67%的纤毛转录本与年龄(DEGA)差异表达。年龄依赖性的表达是区域特异性的,在腹外侧前额叶皮层和海马中分别表达的DEGA数量最高和最低。大多数大脑区域的大多数纤毛dega都会随着年龄的增长而表现出上调。编码纤毛基底体成分的转录本构成了大多数纤毛degas,相邻的脑皮质表现出很大的重叠成对的cilia degas。α /β-微管蛋白和SNAP-25表达在与年龄相关的神经发育和神经退行性疾病中的失调。最引人注目的是,特定的α /β -tubulin亚基(TUBA1A,TUBB2A和TUBB2B)和SNAP -25分别在几乎所有大脑区域的年龄范围内分别显示出最高的下调和上调率。我们的结果支持整个生命周期中纤毛结构和功能成分的高动力学在脑回路的正常生理学中的作用。此外,他们提出了纤毛信号传导在与年龄相关的精神病/神经系统疾病的病理生理机制中的关键作用。
了解人脑是我们这个时代的主要科学挑战。来自非侵入性神经技术数据的分析方法的进步为研究人脑提供了前所未有的机会(Friston,2009; Poldrack和Farah,2015)。尤其是,针对功能磁共振成像(fMRI)数据量身定制的系统模型使研究人类大脑作为互连神经元种群的动态系统(Park and Friston,2013)。这助长了全脑连接学的出现,这是一门年轻的学科,这对于理解大脑的组织原理并在网络神经科学中起着核心作用至关重要(Bassett and Sporns,2017年)。自“ Connectome”一词最初是引入的(Hagmann,2005; Sporns等,2005),因此该领域的发展迅速,现在是Neuroscience中最充满活力的学科之一(Craddock等,2013)。连接组学的目标之一是涵盖整个神经系统的神经元连接的综合图。开创性成就包括秀丽隐杆线虫(White等,1986)或
和增加生活中心理病理学和饮酒障碍(AUD)的风险增加了。7仍然没有完全解决酒精成瘾发展的过程的性质,但已经提出了肠道微生物组的作用。8,9微生物组 - 脑轴通过刺激细胞因子表达,微生物代谢物,例如短链脂肪酸(SCFAS),色氨酸代谢,皮质醇等通过刺激微生物代谢物来构成交流的双向途径。10开创性的研究表明,经过排毒的患者肠道通透性,肠道微生物组的改变以及与AUD严重程度和渴望有关的循环细胞因子和皮质醇的较高水平的增加,肠道通透性,肠道微生物组的改变以及更高水平的肠道循环细胞因子和皮质醇。9,11有趣的是,肠道微生物的改变与慢性饮酒的社会性受损有关。在从AUD患者到小鼠的肠道微生物组移植后,作者证明了这种操纵诱导的脑功能障碍,例如神经蛋白浮肿和