摘要 - 最近,由于其固有的快速转弯,自定义建模,更容易的制造和具有成本效益的实现的功能,因此,近期是针对原型复杂和共形射频(RF)电路的一种非常有效的解决方案。一种可商购的导电丝,伊维利(Electifi)最近被多个研究人员报道,作为使用增材制造技术替换印刷电路板上传统铜痕迹的潜在候选者。使用融合细丝制造方法的添加剂制造方法,本文根据针对太空出生应用的Planar TMM4基板的改进的导电电丝丝的改进版本提出了3D打印的微带贴片天线,例如,3D印刷的卫星,太空层次套件,以及零层次的实验等。也是NASA的最新利益。此外,此处还介绍了全波模型与天线的3D打印原型之间的详细比较分析。针对合适的空间应用,天线尺寸已针对S波段(2 - 4 GHz)的2.56 GHz的工作频率进行了优化。
最近利用超分辨率活细胞显微镜进行的实验表明,非肌肉肌球蛋白 II 微丝比以前认为的更具动态性,经常表现出塑性过程,例如分裂、连接和堆叠。在这里,我们结合序列信息、静电和弹性理论来证明 14.3、43.2 和 72 nm 处的平行交错具有强烈的从微丝上散开头部的趋势,从而可能引发活细胞中看到的各种过程。相反,重叠 43 nm 的直线反向平行交错非常稳定,很可能引发微丝成核。使用新定义的能量景观中的随机动力学,我们预测肌球蛋白杆之间的最佳平行交错是通过反复试验过程获得的,其中两个杆通过滚动和拉链运动以不同的交错连接和重新连接。实验观察到的交错是接触时间最长的配置。我们发现,从异构体 C 到 B 再到 A,接触时间逐渐增加,A-B 异二聚体出奇地稳定,肌球蛋白 18A 应该以较小的交错结合到混合细丝中。我们的研究结果表明,细胞中的非肌肉肌球蛋白 II 细丝首先由异构体 A 形成,然后转化为混合 AB 细丝,正如实验所观察到的那样。
基于高分辨率湍流微结构和近地表速度数据,研究了本格拉上升流系统(东南大西洋)中瞬态上升流细丝内的锋面不稳定性及其与湍流的关系。我们的研究重点是位于细丝边缘的尖锐亚中尺度锋面,其特点是持续的下锋风、强劲的锋面急流和剧烈的湍流。我们的分析揭示了三种不同的锋面稳定状态。(i)在锋面的浅侧,发现了一个 30-40 米深的湍流表面层,具有低位势涡度 (PV)。这个低位势涡度区域呈现出明确的两层结构,上层为对流(埃克曼强迫),下层为稳定分层,其中湍流由强迫对称不稳定性 (FSI) 驱动。该区域的耗散率与埃克曼浮力通量成比例,与 FSI 的最新数值模拟具有很好的定量一致性。(ii)在锋面喷射的气旋侧翼内,靠近横向锋面密度梯度的最大值,气旋涡度足够强,可以抑制 FSI。该区域的湍流是由边缘剪切不稳定性驱动的。(iii)在锋面喷射的反气旋侧翼内,混合惯性/对称不稳定性的条件得到满足。我们的数据为 FSI、惯性不稳定性和边缘剪切不稳定性与亚中尺度锋面和细丝中整体动能耗散的相关性提供了直接证据。