基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
在大鼠大脑皮层中研究了腺苷酸环化酶和鸟嘌呤核苷酸结合蛋白(G蛋白)在锂对脑功能的慢性作用中的可能作用。发现,用锂(具有治疗相关的血清水平为1 mm)对大鼠的慢性治疗增加了mRNA和蛋白质的水平,用于钙调蛋白敏感(1型)和钙调蛋白敏感(2型)形式的腺苷酸环化酶和抑制蛋白质的mRNA和蛋白质水平降低,用于抑制性gja2 gja2 gja2 gja2 gja2 gja2。慢性锂不会改变其他G-蛋白亚基的水平,包括GA,GSA和GJF。在短期锂治疗(最终血清水平为-1 mM)或以较低剂量的锂(血清水平为-0.5 mm)下,h含腺苷酸环化酶和GIA的锂调节均未观察到短期锂治疗(最终血清水平为-1 mm)。结果表明,腺苷酸环化酶的上调和GJA的下调可能代表了分子机制的一部分,锂可以改变脑功能并在治疗情感障碍的治疗中发挥其临床作用。
Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *
p62 是一种参与选择性自噬的衔接蛋白,正常情况下主要存在于细胞质中。由于 p62 具有核定位信号 (NLS) 和核输出信号,因此有人认为 p62 在细胞核和细胞质之间穿梭。我们研究了内源性脂质过氧化产物 4-羟基壬烯醛 (4-HNE) 对小鼠胚胎成纤维细胞内 p62 分布的影响。我们发现 4-HNE 处理会导致 p62 从细胞质易位到细胞核。进一步分析表明,4-HNE 直接与输出蛋白-1 (Xpo1) 结合,后者是各种蛋白质核输出所必需的蛋白质。进一步分析发现 4-HNE 以 p62 依赖的方式增强了核内 EGFP- NLS-CL1 降解。我们的结果表明,4-HNE 通过抑制 Xpo1 改变了 p62 定位到细胞核,并可能影响核内蛋白质的质量控制。
这项研究得到了日本科学技术振兴机构 (JST) 战略基础研究促进计划 CREST“用于长 DNA 合成和自主人工细胞创建的人工细胞反应器系统”研究领域 (编号 JPMJCR19S4)、GteX“大规模并行蛋白质打印机系统的开发”研究领域 (编号 JPMJGX23B1)、ASPIRE“日英合作开发人工光合细胞系统”(编号 JPMJAP24B5) 和科学研究补助金“Kikagaku S”(编号 JP19H05624) 的支持。 术语表(注1) 真核生物:具有细胞核并被核膜包围,且含有线粒体等细胞器的生物的统称。它们包括动物、植物和真菌,具有比原核生物更复杂的细胞结构。 (注2)内在无序蛋白质是在生理条件下不能形成三维结构的蛋白质,与酶等折叠成特定的三维结构才能发挥功能的蛋白质不同。分子间多样化的相互作用网络推动液-液相分离,形成称为凝聚层的液滴。 (注3)液-液相分离:均质液体混合物自发分离成两个具有不同成分的液相的现象。单一聚合物(如天然存在的变性蛋白质)可发生相分离,形成致密相和稀相,或者两种不同组成的致密相(如葡聚糖和聚乙二醇)。 (注4)肽标签:一种用于连接特定蛋白质的短氨基酸序列。通过将DNA序列遗传整合到蛋白质中,可以很容易地将其添加到蛋白质中。本研究中使用的肽标签具有拉链式结构,使得它们能够相互互锁并进行特定结合。另一方面,由于它几乎不与其他分子或蛋白质结合,因此可以利用这一特性选择性地将特定蛋白质结合在一起。在该系统中,一个肽标签附着在IDP上,另一个肽标签附着在要掺入IDP相的蛋白质上。 (注5)分子信标:用于检测特定DNA或RNA序列的核酸探针,具有包含荧光染料和猝灭剂的环状结构。在没有目标序列的情况下,荧光就不会出现,但一旦与序列结合,分子的形状就会发生变化,发出荧光并变得可检测。这可以实时确认样本中特定基因或 RNA 的存在。
摘要:细胞活动在空间上由不同的细胞器组织。虽然一些结构已被充分描述,但许多细胞器的作用尚不清楚。分析生物分子组成是理解功能的关键,但在小型动态结构的背景下很难实现。光邻近标记已成为映射这些相互作用网络的强大工具,但在活细胞应用中,最大限度地提高催化剂定位并降低毒性仍然具有挑战性。在这里,我们公开了一种具有最小细胞毒性和脱靶结合的新型细胞内光催化剂,我们利用这种催化剂进行基于 HaloTag 的微环境映射 (μ Map),以在空间上对活细胞中的亚核凝聚物进行分类。我们还专门开发了一种新的以 RNA 为中心的工作流程 (μ Map-seq),以实现这些结构的并行转录组学和蛋白质组学分析。在验证了我们的方法的准确性后,我们生成了跨核仁、核层、卡哈尔体、副斑和 PML 体的空间图。这些结果为 RNA 代谢和基因调控提供了潜在的新见解,同时显著扩展了 μ Map 平台,以改进生物系统中的活细胞邻近标记。■ 简介
由于存在较长的 poly-A/T 均聚物片段,这会妨碍测序和组装,因此对海鞘 Oikopleura dioica 的线粒体基因组进行测序是一项艰巨的任务。本文,我们报告了通过将 Illumina 和 MinIon Oxford Nanopore Technologies 获得的多个 DNA 和扩增子读数与公共 RNA 序列相结合,对 O. dioica 的大部分线粒体基因组进行测序和注释。我们记录了大量 RNA 编辑,因为线粒体 DNA 中存在的所有均聚物片段都对应于线粒体 RNA 中的 6U 区域。在 13 个典型的蛋白质编码基因中,我们能够检测到 8 个,外加一个未分配的开放阅读框,该阅读框与典型的线粒体蛋白质编码基因缺乏序列相似性。我们发现 nad3 基因已转移到细胞核中并获得了线粒体靶向信号。除了两个非常短的 rRNA 外,我们只能识别出一个 tRNA(tRNA-Met),这表明 tRNA 基因丢失多次,而核基因组中线粒体氨酰-tRNA 合成酶的丢失也支持了这一观点。基于已识别的八个典型蛋白质编码基因,我们重建了最大似然和贝叶斯系统发育树,并推断出该线粒体基因组的极端进化率。然而,附肢动物在被囊动物中的系统发育位置无法准确确定。
摘要 铁硫 (Fe-S) 簇是普遍存在的无机辅因子,是许多细胞必需途径所必需的。由于它们不能从环境中清除,因此 Fe-S 簇在细胞区室(如顶质体、线粒体和细胞质)中从头合成。细胞质 Fe-S 簇生物合成途径依赖于线粒体途径中间体的运输。一种称为 ABCB7 的 ATP 结合盒 (ABC) 转运蛋白在许多常见研究的生物体中负责这一作用,但它在医学上重要的顶复门寄生虫中的作用尚未被研究。在这里,我们识别并描述了一种弓形虫 ABCB7 同源物,我们将其命名为 ABCB7-like (ABCB7L)。基因耗竭表明它对寄生虫的生长至关重要,并且它的破坏会触发部分阶段转换。敲除系的表征突出了细胞质和细胞核 Fe-S 蛋白的生物合成缺陷,导致蛋白质翻译和其他途径(包括 DNA 和 RNA 复制和代谢)出现缺陷。我们的工作为广泛保留 Fe-S 簇生物合成中线粒体和细胞质途径之间的联系提供了支持,并揭示了其对寄生虫生存的重要性。
在宿主细胞内,逆转录病毒会通过病毒核心内部的逆转录产生其RNA基因组的双链DNA副本,随后将该病毒DNA整合到宿主细胞的基因组中。可以在整合发生之前,核心必须越过细胞皮质,通过细胞质转移并进入细胞核。逆转录病毒已经发展出不同的机制来完成这一旅程。本综述检查了各种逆转录病毒,尤其是HIV-1的机制,已演变为整个细胞中的通勤。逆转录病毒穿过细胞皮质,同时调节肌动蛋白动力学,并使用微管作为道路,同时与微管相关的蛋白质和电动机连接以达到细胞核。与其他逆转录病毒相比,HIV-1的图像更清晰,但仍有很多关于逆转录病毒如何完成通勤的知识。