摘要在正常生长过程中,在培养的小鼠成纤维细胞(L-929细胞)中,在培养的小鼠成纤维细胞(L-929细胞)中,在其他条件下以及导致酶活性增加的培养小鼠成纤维细胞(L-929细胞)中,已使用一种对大鼠胶原蛋白羟化酶的特异性抗体。胶原蛋白羟化酶活性每毫克细胞蛋白的活性增加了24倍,因为细胞通过对数发展到生长的固定阶段,而免疫反应性蛋白的细胞融合仅略有变化。在早期对数阶段的细胞中获得了相似的结果,其中通过细胞浓度或乳酸处理刺激酶活性,而没有相应的细胞抗原变化。还显示,这些成纤维细胞中的酶无活性抗原有效地竞争了具有部分纯化酶的抗体结合位点。可以得出结论,早期含量的成纤维细胞包含一种胶原蛋白脯氨酸羟化酶的非活性形式,这可能是功能性酶的前体。
肾小球滤过依赖于肾小球基底膜的 IV 型胶原 (ColIV) 网络,即包含 ColIV 的 α 3、α 4 和 α 5 链的三螺旋分子。编码这些链的基因 (Col4a3、Col4a4 和 Col4a5) 的功能丧失突变与 Alport 综合征 (AS) 中观察到的肾功能丧失有关。对病理机制的细胞基础的准确理解仍然未知,并且目前尚无针对此疾病的特定疗法。在这里,我们生成了一个新等位基因,用于在小鼠的不同肾小球细胞类型中条件性删除 Col4a3。我们发现足细胞在发育中的肾小球基底膜中特异性地产生 α 3 链,并且其缺失足以损害 AS 中所见的肾小球滤过。接下来,我们表明,通过 TGF β 1 增强的水平基因转移以及使用同种异体骨髓间充质干细胞和诱导性多能干细胞,可以挽救 Col4a3 表达并恢复缺乏 Col4a3 的 AS 小鼠的肾功能。我们的概念验证研究支持水平基因转移(例如细胞融合)可以实现 Alport 综合征的细胞治疗。
肾小球滤过依赖于肾小球基底膜的 IV 型胶原 (ColIV) 网络,即包含 ColIV 的 α 3、α 4 和 α 5 链的三螺旋分子。编码这些链的基因 (Col4a3、Col4a4 和 Col4a5) 的功能丧失突变与 Alport 综合征 (AS) 中观察到的肾功能丧失有关。对病理机制的细胞基础的准确理解仍然未知,并且目前尚无针对此疾病的特定疗法。在这里,我们生成了一个新等位基因,用于在小鼠的不同肾小球细胞类型中条件性删除 Col4a3。我们发现足细胞在发育中的肾小球基底膜中特异性地产生 α 3 链,并且其缺失足以损害 AS 中所见的肾小球滤过。接下来,我们表明,通过 TGF β 1 增强的水平基因转移以及使用同种异体骨髓间充质干细胞和诱导性多能干细胞,可以挽救 Col4a3 表达并恢复缺乏 Col4a3 的 AS 小鼠的肾功能。我们的概念验证研究支持水平基因转移(例如细胞融合)可以实现 Alport 综合征的细胞治疗。
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 使用其刺突蛋白通过人血管紧张素转换酶 2 (hACE2) 附着到宿主细胞上。可以通过设计一种可以阻断刺突蛋白和 hACE2 之间相互作用的抑制剂来阻止病毒感染。如图 1 所示,一个刺突蛋白三聚体包含三个刺突蛋白,每个刺突蛋白由亚基 S1 和 S2 组成。S1 由 S1A 和 S1B 组成(图 1A),其中 S1B 也称为受体结合域 (RBD),与 hACE2 建立直接相互作用。1 此外,S2 亚基在介导病毒膜与宿主细胞融合方面发挥作用。因此,病毒进入是通过一系列事件完成的,即 S1 与 hACE2 结合,然后触发 S2 将其构象改变为更稳定的融合后状态并允许病毒进入宿主细胞。 2–4 由于 S1 直接与 hACE2 相互作用,许多研究小组一直在积极致力于发现各种生物分子,如抗体 5–10 或适体 11–16,以有效阻断 S1 和 hACE2 之间的相互作用。
摘要:宿主的共同进化及其寄生虫具有效应血细胞类型的异质性,从而提供了具有可变有效性的免疫防御反应。在这项工作中,我们表征了果蝇威利斯托尼的血细胞,果蝇威利斯托尼是一种进化了具有广泛变化和高度可塑性的细胞免疫系统的物种。单克隆抗体并用于间接免疫荧光实验中,以表征血红素亚群,遵循其功能特征和分化。pagococytosis和寄生分析用于确定血细胞类型的功能特征。样品。我们确定了一种新的多核巨型血细胞(MGH)类型,该型在细胞免疫反应中对寄生虫的反应进行了区分。这些细胞通过核分裂和细胞融合在循环中分化,也可以源自中央造血器官淋巴腺。它们具有二元功能,因为它们通过吞噬作用吸收细菌,并参与了寄生虫的封装和消除。在这里,我们表明,在响应大型外国颗粒(例如寄生虫)中,MGHS具有区分,具有二元功能,并有助于高效的细胞免疫反应,类似于脊椎动物的异物巨细胞。
了解 SARS-CoV- 2 感染机制并寻找潜在治疗方法是全球当务之急。使用定量系统药理学方法,我们确定了一组可重新利用和在研药物可作为 COVID- 19 的潜在治疗方法。这些药物是根据连接图筛选的 SARS-CoV- 2 感染的 A 549 细胞的基因表达特征推断出来的,并通过网络邻近性分析根据病毒-宿主相互作用组中的疾病模块确定了优先次序。我们还根据 ACE 2 过表达的 A 549 细胞的转录组,确定了旨在抑制重症 COVID- 19 患者过度炎症反应的免疫调节化合物。使用 SARS-CoV- 2 感染的 Vero-E 6 细胞进行的实验,以及使用 HEK 293 T 和 Calu- 3 细胞进行的探测 ACE 2 / SARS-CoV- 2 刺突蛋白介导的细胞融合的独立合胞体形成试验表明,几种预测化合物具有抑制活性。其中,沙美特罗、罗特林和 mTOR 抑制剂在 Vero-E 6 细胞中表现出抗病毒活性;丙咪嗪、林西替尼、己基间苯二酚、依折麦布和溴苯那敏阻碍了病毒进入。这些新发现为扩大用于治疗 COVID- 19 的化合物库提供了新途径。
□ 先进计算 – 用于设计和开发计算硬件和软件的技术,包括从手持计算器到超级计算机的全系列硬件的设计创新以及外围设备。 □ 先进材料 – 通过开发专门的加工和合成技术而创造的具有工程特性的材料,包括陶瓷、高附加值金属、电子材料、复合材料、聚合物和生物材料。 □ 生物技术 – 应用重组 DNA 技术、生物化学、分子和细胞生物学、遗传学和遗传工程、细胞融合技术和新生物过程等技术,利用生物体或生物体的一部分来生产或改造产品、改良植物或动物、开发用于特定用途的微生物、确定小分子药物开发的目标、将生物系统转化为有用的过程和产品或开发用于特定用途的微生物。 □ 电子设备技术 – 涉及微电子、半导体、电子设备和仪器、射频、微波和毫米波电子、光学和光电设备以及数据和数字通信和成像设备的技术。 □ 环境技术 – 评估和预防对人类健康或环境的威胁或损害、环境清理和替代能源的开发。为发现技术信息而开展的活动,以及与将技术信息转化为新产品或改进产品、工艺、技术、配方、发明或软件有关的技术和非常规活动。 □ 探索现有药物、设备或生物产品的新用途,前提是新用途需要联邦食品药品管理局根据修订后的 21CFR 单独许可。
简介多倍体一词是指包含两组以上染色体的细胞。在多个细胞物质中,当生殖细胞经历全基因组重复(WGD)并引起完整的多倍体生物,或者在亚生物下,只有在否则二倍体生物体中的体细胞中,就可以在生物水平上发现多倍体。在这些不同类型的多倍体之间,多倍体化的后果可能会有显着差异。在这里,我们重点介绍多倍体在亚生物水平上的后果,概述了正常生理和疾病中体细胞的功能。在发现染色体后不久,在十九世纪后期对多倍体细胞进行了第一次观察(Wilson,1925年)。在过去的一个世纪中,对植物和昆虫的研究极大地有助于我们理解体细胞多倍体的出现,在其他地方进行了广泛的审查(Almeida等,2022; Edgar等,2014; Hua and Orr-Weaver,2017)。总而言之,体细胞可以通过细胞融合或经过非规范细胞周期复制其DNA,但不分为两个子细胞。Many terms have been used to describe these non-canonical cell cycles but, in essence, they can be divided into two types: non-canonical cell cycles in which cells alternate between S and G phase, which we refer to as ‘ endoreplication cycles ' , and non-canonical cell cycles in which cells undergo all phases of the canonical cell cycle but exit M phase before the initiation orcompletion
多年来积累的有关细胞分化机制的数据推动了细胞重编程的发展——这是生物技术的一个全新策略。将体细胞恢复到多能状态甚至将一种体细胞类型直接转换为另一种体细胞类型(转分化)的能力已成为细胞生物学的一项重要突破,因为它广泛应用于从基础研究到再生医学和遗传疾病治疗。早期的重编程技术,如体细胞核移植 (SCNT) 和细胞融合,大约 60 年前首次实施,证实了体细胞的分化状态是可以逆转的(Briggs 和 King,1952 年;Köhler 和 Milstein,1975 年)。尽管这些技术适用于多种应用(Köhler 和 Milstein,1975 年;Lee 等人,2016 年),但对于大多数现代重编程目的而言,它们仍然过于随机和不可控。重编程的下一个级别是在体细胞中外源性过度表达转录因子 (TF)。Takahashi 和 Yamanaka (2006) 在他们著名的将体细胞重编程为诱导多能干细胞 (iPSC) 的实验中使用了这种方法。TF 的过度表达仍然是改变细胞命运的最常见和最有效的方法。如今,存在多种技术可以实现这种改变。其中之一可能是 CRISPR/Cas9 — 一种基于细菌抗病毒防御系统的基因工程工具(Hsu 等人,2014 年)。该系统经过多次修改,不仅允许 DNA 编辑,还可以通过激活、抑制甚至染色质重塑等不同方式调节基因表达。
目前认为,心肌损伤可能是这些患者心律失常风险增强的主要原因。1 许多个体,尤其是重症患者都出现了心肌细胞损伤,其表现为肌钙蛋白水平升高。因此,据报道,肌钙蛋白 T 水平升高的患者室性心动过速/室性颤动的发生率更高。1 虽然心肌受累的机制仍在研究中,但可能包括直接的病毒感染、缺氧诱导的细胞凋亡和细胞因子风暴相关的细胞损伤(图)。1 然而,有证据表明,在重症监护病房患者中,尽管心律失常的发生率很高(约 50% 的病例),但只有一半出现急性心脏损伤(肌钙蛋白 I 水平中位数在正常范围内),这表明除心肌损伤外,其他因素也会导致 COVID-19 的心律失常风险增加。在这方面,人们越来越多地认识到药物治疗在增强对 QT 相关危及生命的室性心律失常,特别是尖端扭转型心动过速 (TdP) 的易感性方面的潜在作用。1 事实上,一些用于抵抗病毒入侵和复制的标明外用药可能会促进校正 QT 间期 (QTc) 延长。例如氯喹/羟氯喹,一种通过增加病毒/细胞融合所需的内体 pH 值来阻止感染的抗疟药,以及洛匹那韦/利托那韦,一种干扰病毒 RNA 复制的蛋白酶抑制剂。值得注意的是,在这两种情况下,对心室复极的影响都是直接的,通过抑制 hERG-K + 通道,也通过增加其他同时延长 QT 的药物的循环水平而间接产生。 1 事实上,氯喹和羟氯喹会抑制 CYP2D6(细胞色素 P450 2D6),该酶能代谢多种抗精神病药、抗抑郁药和抗组胺药,