临床上可用的小直径合成血管移植物(SDVG)由于移植物治疗受损而具有不令人满意的通畅率。因此,自体植入物仍然是小容器更换的金标准。可生物可吸收的SDVG可能是另一种选择,但是许多聚合物的生物力学特性不足,导致移植物衰竭。为了克服这些局限性,开发了一种新的可生物降解的SDVG,以确保安全使用,直到形成足够的新组织。SDVG是使用由热塑性聚氨酯(TPU)和新的自我增强TP(U-eREA)(TPUU)组成的聚合物混合物的电纺。通过细胞播种和血流相容性测试在体外测试生物相容性。在长达六个月的一段时间内,在大鼠中评估体内性能。 自体大鼠主动脉植入物充当对照组。 扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。 tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。 所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。 没有观察到炎症,动脉瘤,内膜增生或血栓形成。 对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。 这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。在长达六个月的一段时间内,在大鼠中评估体内性能。自体大鼠主动脉植入物充当对照组。扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。没有观察到炎症,动脉瘤,内膜增生或血栓形成。对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。
1. 医学,陶氏健康科学大学,卡拉奇,巴基斯坦 2. 医学,真纳研究生医学中心,卡拉奇,巴基斯坦 3. 陶氏健康科学大学陶氏医学院,卡拉奇,巴基斯坦 4. 神经肿瘤学,纽约理工学院,骨科医学院,旧韦斯特伯里,美国 5. 外科,阿瓦隆大学医学院,威廉斯塔德,CUW 6. 内科,Pandit Bhagwat Dayal Sharma 医学科学研究生研究所,罗塔克,印度 7. 医学,真纳信德医科大学,卡拉奇,巴基斯坦 8. 内科,尼什大学医学院,尼什,SRB 9. 内科,尼泊尔医学院,加德满都,NPL 10. 医学,卡帕加维纳亚加医学科学研究所与研究中心,坎奇普拉姆,印度 11. 医学,TMSS 医学院,博古拉,BGD 12. 医学,联合国研究与理解,国际学院,喀土穆,SDN 13. 埃尔拉齐大学医学院,喀土穆,SDN 14. 内科,梅奥医院,拉合尔,PAK 15. 内科,尼泊尔医学院和教学医院,加德满都,NPL 16. 病理学和实验室医学,安提瓜美国大学,圣约翰,ATG 17. 外科,梅奥医院,拉合尔,PAK
与生物材料应用相关的研究涵盖了组织工程和再生医学 (TERM) 领域的很大一部分,本研究课题致力于生物材料用途的多种可能性。本研究课题共收到 10 篇手稿,35 位作者参与其中,最终选出 6 篇。其中 4 篇为原创研究文章,2 篇为评论文章。生物材料最有趣的方面之一是我们能够研究所选材料的整个生命周期,可能的第一步是建模和材料科学。通常,当我们尝试开发一种新材料时,可以使用各种光谱方法(例如傅里叶变换红外光谱 (FTIR)、X 射线光电子能谱 (XPS))和显微镜方法(例如数字显微镜、扫描电子显微镜 (SEM) 或荧光显微镜)来评估表面和成分。这些方法需要根据起始材料和制造类型进行选择,这也是将生物材料划分为适当类别的另一个方面,因为金属基材料通常不适合 FTIR、荧光显微镜或通常不适合肿胀或酶分解相关的表征,但它们的途径或消除可以在生物系统中跟踪,例如,使用磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT)。制造方法主要可分为以下几种:相分离(沉淀)、快速成型、超临界流体技术、致孔剂浸出、静电纺丝、3D 打印、冷冻干燥、离心铸造、模板和微图案化( Collins and Birkinshaw,2013;Tóth 等,2023)。然而,一般来说,对生物材料的主要要求是改善组织再生,并能够创造一个支持细胞附着、增殖、迁移和分化的环境(Juriga 等人,2022 年;Zhang 等人)。使用时间最长的生物材料之一是金属,因此可以肯定地说,这种材料经受住了时间的考验,然而,我们仍然可以看到金属生物材料的制造和处理方面的发展方向。在制造方面,传统方法是铸造金属,但金属的 3D 打印正在迅速引起人们的兴趣,然而,由于 3D 打印医疗器械的监管尚不明确,因此医疗器械中仍然应用铸造材料(Burnard
摘要:由于人类的明显需求,纺织业已发展成为仅次于农业的第二大制造业。纺织业是使用聚合物的最重要和主要行业之一。聚合物是纺织品生产的重要化学成分。从开发纤维到染色和整理纺织品,纺织品生产过程的每个步骤都需要用到聚合物。聚氨酯 (PU) 是一种多边聚合物类别,在不同条件下具有各种结构、形状和行为,被认为对许多有用和智能的反应有益。对于各种应用,聚氨酯最近越来越受到科学界的关注。这篇评论文章介绍了聚氨酯在纺织应用方面的最新进展。
摘要:作为具有广泛应用的现代材料,日常生活中经常遇到纳米纤维。生产技术的重要优势,例如容易,具有成本效益和工业适用的是纳米纤维偏爱的重要因素。纳米纤维在健康领域具有广泛的使用范围,在药物输送系统和组织工程中都是优选的。由于其结构中使用的生物相容性材料,它们在眼部应用中也经常受到首选。他们作为药物输送系统的药物释放时间很长,并且已用于角膜组织研究,这些研究已成功地在组织工程中开发出来,这是纳米纤维的重要优势。本综述研究了纳米纤维,其生产技术和一般信息,基于纳米纤维的眼药输送系统以及详细的组织工程概念。
摘要:天然聚合物由于其内在的生物相容性和仿生性,已在很大程度上被研究为组织工程应用的脚手架材料。传统的脚手架制造方法提出了几个局限性,例如使用有机溶剂,获得非均匀结构,孔径的变化以及缺乏孔隙互连性。这些缺点可以根据使用微流体平台的创新和高级生产技术来克服这些缺点。液滴微流体和微流体旋转技术最近在组织工程领域中发现了可用于生产微粒和微纤维的应用,这些微粒和微纤维可以用作支架或三维结构的基础。与标准制造技术相比,基于微流体的技术具有多种优势,例如获得具有均匀尺寸的颗粒和纤维的可能性。因此,可以获得具有极为精确的几何形状,孔分布,孔相互连接性和均匀孔径的支架。微流体也可以代表一种更便宜的制造技术。在这篇综述中,将说明基于天然聚合物的微粒,微纤维和三维支架的微流体制造。还将提供其在不同组织工程领域的应用概述。
近年来,将羟基磷灰石(HA)应用于植入物生物稳定的金属底物上的涂层,植入物周围的骨骼生长的刺激以及恢复时间的优化吸引了世界上许多研究人员的注意。在这方面,当前的研究对HA及其用于组织工程应用的复合涂料进行了综述。ha是近年来由于其体外生物活性,骨诱导和骨化性能而成为研究的生物陶瓷之一。根据先前的报告,成功进行了涂层植入物,以实现高腐蚀性,骨骼生长和再生以及腐蚀电流密度的降低。当前的研究对先前的研究作品进行了综述,涉及HA及其复合涂层在底物上的涂层机理,物理机械,体外生物活性和生物相容性特性。获得的结果表明,HA及其复合材料在改善耐腐蚀性,提供生物相容性,直接与组织,加速治疗以及降低对卫生保健部门施加的成本方面对金属底物具有协同作用。
体外血脑屏障(BBB)的组织工程正在迅速扩展,以应对模仿BBB的天然结构和功能的挑战。这些模型中的大多数利用2D常规微流体技术。然而,3D微血管模型提供了更紧密地概括体内微脉管系统的细胞结构和多细胞排列,并且还可以重新创建血管床的分支和网络拓扑。从这个角度来看,我们讨论了当前的3D脑微血管建模技术,包括模板,打印和自组装毛细管网络。此外,我们解决了生物矩阵和流体动力学的使用。最后,将确定关键挑战以及未来的方向,这些方向将改善下一代大脑微脉管模型的发展。
培养肉,也称为人工培育肉或实验室生长肉,旨在通过体外细胞培养而非传统的牲畜屠宰来生产肉类[1,2]。作为一种新兴的细胞农业技术,生产培养肉的本质是基于动物组织再生机制构建肌肉组织。因此,各种组织工程技术已应用于培养肉[3−5]。尽管有许多发展,但不难发现它们可以分为两类,这也是培养肉的两个典型难点。一类侧重于促进肌肉细胞分化,这可以通过纹理/图案化的表面或空间限制来帮助实现。另一种致力于通过自上而下或自下而上的方法构建三维(3D)组织结构。与直接制造3D结构的自上而下方法不同,自下而上的策略是首先生成构建块,然后将其组装起来以实现大规模构建。基于这些理解,我们将从纹理支架、3D 生物打印、成型、图案化和细胞片工程等分类概述培养肉的前沿组织工程策略。在讨论工程方法时,还将介绍应用材料。最后,我们将讨论该领域的未来前景和挑战。
摘要:椎间盘突出症(IVDD)引起的下腰痛(LBP)一直是不容忽视的重要问题,传统疗法存在许多根深蒂固的难治性并发症,促使其治疗模式向新疗法转移。本文主要总结了传统治疗方法的不足,分析了IVDD治疗的研究现状和未来发展方向,概述了最有前景的IVDD疗法,包括细胞、外泌体、基因和组织工程疗法,尤其是组织工程疗法,贯穿了其他疗法的全过程。此外,文章重点介绍了每种治疗方法所面临的细胞、动物和临床前挑战,以及各自的优缺点,旨在为通过新治疗方法缓解IVDD患者的疼痛提供更好的思路。
