1洪堡大学,纽约大学15,12489柏林,德国汉堡大学; juergen.kurths@pik-potsdam.de 2生物学系,萨拉托夫州立大学83,410012萨拉托夫,俄罗斯; shirokov_a@ibppm.ru(A.S。); nik-navolokin@yandex.ru(N.N.); inna-474@yandex.ru(i.b.); terskow.andrey@gmail.com(A.T。); ler.vinnick2012@yandex.ru(V.T。); anna.kuzmina.270599@mail.ru(A.T。); arina-evsyukova@mail.ru(A.E。); eloveda@mail.ru(d.z.); adushkina.info@mail.ru(V.A。); Admitrenko2001@mail.ru(A.D.); mariamang1412@gmail.com(M.M.); krupnova_0110@mail.ru(v.k。)3光电和生物医学光子学集团,AIPT,阿斯顿大学,伯明翰B4 7et,英国; e.rafailov@aston.ac.uk 4 Astrakhanskaya Str。 83,410012萨拉托夫,俄罗斯; fedosov_optics@mail.ru(i.f. ); paskalkamal@mail.ru(A.D。); dethaos@bk.ru(M.T。) 5植物与微生物生物化学与生理学研究所,俄罗斯科学院,俄罗斯萨拉托夫的Prospekt Entuziastov 13,410049,俄罗斯6病理解剖学系,萨拉托夫医学州立大学,Bolshaya Kazachaya Str。 112,410012萨拉托夫,俄罗斯; Allaalla_72@mail.ru 7 Lovelace Biomedical Research Institute,Albuquerque,NM 87108,美国; noghero@gmx.com(a.n. ); dbragin@salud.unm.edu(D.B. ); obragina@gmx.com(O.B.) 8新墨西哥州阿尔伯克基大学医学院神经病学系,美国新墨西哥州87131,美国9美国电子学院,保加利亚科学院,保加利亚科学院 : +7-8452519220(O.S.-G.); +44-0121-204-3718(S.S.)3光电和生物医学光子学集团,AIPT,阿斯顿大学,伯明翰B4 7et,英国; e.rafailov@aston.ac.uk 4 Astrakhanskaya Str。83,410012萨拉托夫,俄罗斯; fedosov_optics@mail.ru(i.f.); paskalkamal@mail.ru(A.D。); dethaos@bk.ru(M.T。)5植物与微生物生物化学与生理学研究所,俄罗斯科学院,俄罗斯萨拉托夫的Prospekt Entuziastov 13,410049,俄罗斯6病理解剖学系,萨拉托夫医学州立大学,Bolshaya Kazachaya Str。112,410012萨拉托夫,俄罗斯; Allaalla_72@mail.ru 7 Lovelace Biomedical Research Institute,Albuquerque,NM 87108,美国; noghero@gmx.com(a.n.); dbragin@salud.unm.edu(D.B.); obragina@gmx.com(O.B.)8新墨西哥州阿尔伯克基大学医学院神经病学系,美国新墨西哥州87131,美国9美国电子学院,保加利亚科学院,保加利亚科学院 : +7-8452519220(O.S.-G.); +44-0121-204-3718(S.S.)8新墨西哥州阿尔伯克基大学医学院神经病学系,美国新墨西哥州87131,美国9美国电子学院,保加利亚科学院,保加利亚科学院: +7-8452519220(O.S.-G.); +44-0121-204-3718(S.S.)72,1784 sofifa,保加利亚; ekaterina.borisova@gmail.com 10 Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany 11 Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University Moscow, 119991 Moscow, Russia * Correspondence: glushkovskaya@mail.ru (O.S.-G.); s.sokolovsky@aston.ac.uk(s.s.);电话。
1 安徽农业大学人文社会科学学院心理学系,合肥,中国;2 安徽警官职业学院信息管理系,合肥,中国;3 中国科学技术大学人文社会科学学院心理学系,安徽,合肥,中国;4 合肥国家微尺度物质科学研究中心、中国科学技术大学生命科学与医学部、中国科学技术大学第一附属医院放射科,合肥,中国;5 中国科学技术大学先进技术研究院脑疾病物理治疗应用技术中心,合肥,中国;6 上海外国语大学国际商学院脑机智能信息行为教育部和上海市重点实验室,上海,中国
颅内血肿(ICH)是指头部受伤或脑血管破裂时,血液在脑内或脑与颅骨之间积聚,可导致脑部受压,引起头痛、呕吐、精神错乱,甚至癫痫或昏迷。若不及时治疗,血肿会导致颅内压升高,导致脑损伤或脑疝,严重者可危及生命。快速诊断和干预可大大降低风险,较大的血肿通常需要手术治疗,以避免严重的后遗症。检测血肿是快速诊断血肿的基础,通过准确及时的检测,医生可以快速做出诊断并制定合适的治疗方案,因此,血肿的检测非常重要。
该内容已被UAB数字共享的授权管理员所接受,并作为免费开放访问项目提供。有关此项目或UAB数字共享的所有查询,都应将其针对UAB图书馆学术通信办公室。
简介:语音脑机接口 (BCI) 是一种可以帮助神经系统障碍患者恢复交流能力的技术,旨在从脑信号合成语音。大多数研究都集中于直接解码文本或语音片段,如音素或单词。然而,目前尚不清楚语音生成过程是否在神经记录中以这种形式呈现。一种有趣的方法是模拟声道的行为,该行为已从多个大脑区域成功解码。声道由称为发声器官的不同生理结构组成(即下颌、软腭和嘴唇)。所有发声器官的位置和运动的组合决定了语音生成过程中听到的声音。最近的进展使得从这些发声器官的时间轨迹重建语音成为可能,使它们成为构建语音 BCI 的良好候选者。本研究将探讨从微创脑电图解码发声轨迹的可能性。材料与方法:通过这项工作,我们将系统地评估从神经信号中解码发声轨迹,从而评估构建以发声轨迹为中间表示的语音 BCI 的可行性。我们计划使用 Verwoert 等人 [2] 提出的 SingleWordProductionDutch (SWPD) 数据集,其中 10 位参与者读出单个单词,同时测量立体定向脑电图 (sEEG) 和音频数据。结果:我们使用 Gao 等人 [1] 提出的模型从音频中提取发声轨迹。从 sEEG 记录中提取高伽马功率,其中包含有关语音过程的高度本地化信息。图 1 显示了 SWPD 数据集中植入其中一名受试者的 sEEG 电极的位置,以及来自一次记录的发声轨迹。我们训练一个线性回归模型,直接从神经数据预测发音轨迹,并通过与实际轨迹的相关性来评估重建。
用抗抑郁药治疗抑郁症有一定效果。经颅交流电刺激可为重度抑郁症成年患者提供非药物治疗方案。然而,尚无研究使用这种刺激治疗首发和未用过药物的重度抑郁症患者。我们采用随机、双盲、假对照设计,研究了这种刺激在中国汉族人群中治疗首发未用过药物的患者的临床疗效和安全性。从 2018 年 6 月 4 日至 2019 年 12 月 30 日,我们招募了 100 名患者并随机分配接受连续 4 周(第 4 周)每天 20 次 40 分钟、77.5Hz、15mA、一侧前额和两次乳突主动刺激或假刺激(每组 n=50),之后进行额外 4 周的无刺激疗效/安全性评估(第 8 周)。主要结果是缓解率,定义为第 8 周 17 项汉密尔顿抑郁量表 (HDRS-17) 评分 4-7。次要分析包括反应率(定义为 HDRS-17 减少 5-50%)、从基线到第 4 周和第 8 周抑郁症状和严重程度的变化以及不良事件发生率。数据以意向治疗样本进行分析。 49 名阳性治疗组患者和 46 名假治疗组患者完成了研究。第 8 周结束时,阳性治疗组 50 人中有 27 人(54%)、假治疗组 50 人中有 9 人(18%)达到缓解。阳性治疗组的缓解率显著高于假治疗组,风险比为 1.78(95% 置信区间,1.29,2.47)。与假治疗组相比,阳性治疗组在第 4 周的缓解率、第 4 周和第 8 周的反应率显著更高,并且抑郁症状从基线到第 4 周和第 8 周的减少幅度更大。两组的不良事件相似。总之,对额叶皮质和两个乳突进行刺激可显著改善首发未接受药物治疗的重度抑郁症患者的症状,可考虑作为门诊环境下对他们进行的非药物干预。
摘要:大脑对经颅电刺激(TES)的响应能力的个体差异越来越多地证明了TE的影响的巨大差异。已开发出解剖学上详细的计算大脑模型来解决这种可变性。但是,静态大脑模型在解释大脑的动态状态时并不是“现实的”。因此,基于TES神经血管效应的系统分析,在此观点文章中提出了在护理点上的人类在循环中的优化。首先,使用生理详细的神经血管模型进行了模态分析,该模型在0 Hz至0.05 Hz范围内,通过平滑肌细胞在0 Hz至0.05 Hz范围内进行途径,该模式通过平滑肌细胞进行了血管反应,该模式通过弹性的近红外光谱光谱(FNIRS)测量。在TES期间,瞬态感觉可能会对血液动力学产生唤醒作用,因此我们提出了一个健康的病例系列,用于FNIRS的黑盒建模 - 短期TDCS效应的互化效果。块外生性测试拒绝了tdcs不是FNIRS总血红蛋白变化(HBT)和瞳孔扩张变化(p <0.05)的单步格兰格原因的说法(p <0.05)。Moreover, grey-box modeling using fNIRS of the tDCS effects in chronic stroke showed the HbT response to be significantly different (paired-samples t -test, p < 0.05) between the ipsilesional and contralesional hemispheres for primary motor cortex tDCS and cerebellar tDCS, which was subserved by the smooth muscle cells.在这里,我们的看法是,各种生理途径扩散TE的影响可能会导致状态特征变异性,这对于临床翻译而言可能具有挑战性。因此,我们使用我们的减少二维模型和随机,无衍生的协方差矩阵适应演化策略进行了一项案例研究。我们从计算分析中得出结论,在未来的研究中,在降低神经调节中的受试者间和受试者内变异性的未来研究中,对TE在护理点上的影响。
1个新加坡Nanyang Avenue 639798的Nanyang Technological University的计算机科学与工程学院; Arumugam004@e.ntu.edu.sg 2社会科学学院(SSS),Nanyang Technological University,新加坡639818,新加坡; bhattacharya.sagarika7@gmail.com(S.B. ); annabelchen@ntu.edu.sg(S.H.A.C.) 3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o. ); jdesmon2@jhmi.edu(J.E.D。) 7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。1个新加坡Nanyang Avenue 639798的Nanyang Technological University的计算机科学与工程学院; Arumugam004@e.ntu.edu.sg 2社会科学学院(SSS),Nanyang Technological University,新加坡639818,新加坡; bhattacharya.sagarika7@gmail.com(S.B.); annabelchen@ntu.edu.sg(S.H.A.C.)3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o. ); jdesmon2@jhmi.edu(J.E.D。) 7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o.); jdesmon2@jhmi.edu(J.E.D。)7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.)†高级作家。‡同等贡献。
摘要:开发有效的工具和策略来促进运动学习是一项高度优先的科学和临床目标。特别是,与运动相关的区域已被研究作为通过非侵入性脑刺激 (NIBS) 促进运动学习的潜在目标。除了阐明运动功能与脑震荡活动之间的关系外,经颅交流电刺激 (tACS) 作为一种可能促进运动学习的技术也引起了人们的关注,这种技术可以非侵入性地调节脑震荡活动并调节脑震荡通信。本综述重点介绍了通过操纵脑震荡活动使用 tACS 来增强运动学习及其潜在的临床应用。我们讨论了一种潜在的基于 tACS 的方法,通过纠正异常的脑震荡活动并促进中风后或帕金森病患者的适当震荡通信来改善运动缺陷。人际 tACS 方法操纵脑内和脑间通信可能会产生亲社会效应,并可能促进治疗师康复期间的教学-学习过程。通过 tACS 重新建立振荡大脑交流的方法可能对运动恢复有效,并最终可能推动基于运动学习的新型神经康复方法的设计。
主题:进行的膀胱/卧床治疗研究:丹麦引用:Eriksen,L。,“对遗传学的反射术研究研究,夜总会/床润湿2.”丹麦反射学家协会研究委员会报告,1995年,首次报道1991年。概要:有18岁的儿童,从5-10岁的年龄,有锻炼问题,有15个反射学