CRISPR (clustered, regularly interspaced, short palindromic repeats) 是一种来自细菌降解入侵的病毒 DNA 或其 他外源 DNA 的免疫机制。在该机制中, Cas 蛋白( CRISP‐associated protein )含有两个核酸酶结构域,可以 分别切割两条 DNA 链。一旦与 crRNA ( CRISPR RNA )和 tracrRNA 结合形成复合物, Cas 蛋白中的核酸酶即 可对与复合物结合的 DNA 进行切割。切割后 DNA 双链断裂从而使入侵的外源 DNA 降解。
基于 CRISPR/Cas9 的基因编辑的引入大大加速了治疗性基因组编辑。然而,CRISPR/Cas9 蛋白的脱靶 DNA 切割阻碍了其临床转化,从而阻碍了其作为可编程基因组编辑工具的广泛使用。尽管已经开发出具有更好错配识别能力的 Cas9 变体,但它们的靶向 DNA 切割率明显较低。在这里,我们将来自新凶手弗朗西斯菌 (FnCas9) 的更特异性的天然 Cas9 与最广泛使用的 SpCas9 蛋白的动力学进行了比较。对两种 Cas9 蛋白的游离形式和 gRNA 结合形式进行了长期原子 MD 模拟,并比较了它们的域重排和与 gRNA 的结合亲和力,以揭示 FnCas9 蛋白特异性增强的可能原因。与 SpCas9 相比,FnCas9 与 gRNA 的结合亲和力更大、域静电更大、波动性更大,这可以解释其特异性增强和对错配的容忍度更低。
ydat在某些lambdoid噬菌体和预言中相当于CII阻遏物的功能。ydat可作为DNA结合蛋白起作用,并识别5 0 -TTGATTN 6 AATCAA-3 0倒置重复。DNA结合结构域是一个螺旋 - 螺旋 - 螺旋(HTH)含有POU域,其次是长螺旋(6),形成了一个反平行的四螺旋束,形成了四聚体。与典型的HTH基序相比,HTH基序中的螺旋2和识别螺旋3之间的循环异常长,并且在YDAT家族内的序列和长度高度变化。POU结构域具有相对于自由结构中的螺旋束相对于螺旋束的自由度,但是它们的方向固定在DNA结合上。
为了找到一种对特定蛋白质有效且安全的药物,药理学家必须测试数千种化合物。5然而,药物靶标相互作用(DTA)的实验测量既耗时又耗资源。DTA预测的计算机模拟方法因其效率高、成本低而备受关注。现有的计算机模拟方法主要可分为三类:基于结构的方法、基于特征的方法和深度学习方法。基于结构的方法可以通过考虑小分子和蛋白质的三维结构来探索潜在的结合位点。对接是一种成熟的基于结构的方法,它使用多种模式定义和评分函数来最小化结合的自由能。分子动力学模拟是另一种流行的基于结构的方法,它可以提供有关单个粒子运动随时间变化的最终细节。6然而,基于结构的方法非常耗时,如果蛋白质的三维结构未知,则无法使用。7
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2021 年 5 月 27 日发布。;https://doi.org/10.1101/2021.05.26.445794 doi:bioRxiv preprint
结果:平均年龄为57.10±10.0岁。总体而言,CVD影响了所有T2DM的人中约有19.9%。T2DM的大血管并发症包括冠心病,心肌梗塞(MI),心脏不足和脑血管疾病。老年年龄(C 2 = 22.70),没有职业(C 2 = 20.97),中和高社会经济地位(SES)(C 2 = 19.92),TYG-WC的较高水平(C 2 = 6.60)和较高的ZMS(C 2 = 7.59)与高CVD相关。许多代谢指数已显示与CVD结合的T2DM的联系,并且HRB共存在与HRB和ZMS的聚类之间存在剂量 - 响应关系。多因素干预与CVH之间存在剂量 - 反应关系。在调解训练分析中,HRB,性别,Tyg,Tyg-
摘要:抗体在纳米医学中的应用现在是研究中的标准实践,因为它代表了一种创新的方法10,以选择性地将化学疗法剂选择性地授予肿瘤。在不同类型的11种癌症中过表达的各种靶标或标记导致对抗体共轭纳米颗粒的需求很高,这些纳米颗粒具有通用性且易于自定义。考虑到上的12缩放,抗体共轭纳米颗粒的合成应简单且高度可重现。在这里,我们开发了一种简便的涂料13策略,使用“单击化学”生成抗体共轭纳米颗粒,并进一步评估了它们对癌细胞14表达不同标记的选择性。我们的方法始终被重复以与CD44和EGFR的抗体结合,这是15个是显着的癌细胞标记。官能化的颗粒分别对CD44和EGFR过表达16个细胞具有出色的细胞特异性。我们的结果表明,开发的涂层方法可再现,多功能,无毒,可用于具有不同抗体的17个粒子功能化。这种嫁接策略可以应用于各种纳米颗粒,并将为未来的靶向药物输送系统的发展提供18个致敬。19
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
心血管疾病 (CVD) 是全球最大的死亡原因,受遗传因素影响很大。全基因组关联研究已经在非编码基因组中定位了 90% 以上的 CVD 相关变异,这些变异可以改变转录因子 (TF) 等调节蛋白的功能。然而,由于全基因组关联研究中的单核苷酸多态性 (SNP) 数量极其庞大 (> 500,000),因此对体外分析的变异进行优先排序仍然具有挑战性。在这项工作中,我们实现了一种计算方法,该方法考虑基于支持向量机 (SVM) 的 TF 结合位点分类和心脏表达数量性状位点 (eQTL) 分析,以识别和优先排序潜在的 CVD 致病 SNP。我们在 TF 足迹和假定的心脏增强子中发现了 1535 个与 CVD 相关的 SNP,以及 14,218 个与心脏组织中的基因型依赖性基因表达处于连锁不平衡的变异。利用来自人类诱导多能干细胞衍生的心肌细胞中的两种心脏 TF(NKX2-5 和 TBX5)的 ChIP-seq 数据,我们训练了一个大规模间隙 k-mer SVM 模型,以识别改变 NKX2-5 和 TBX5 结合的与 CVD 相关的 SNP。通过对假定增强子中的人类心脏 TF 基因组足迹进行评分并通过电泳迁移率分析测量体外结合来测试该模型。根据预测的结合变化幅度,对预测会改变 NKX2-5(rs59310144、rs6715570 和 rs61872084)和 TBX5(rs7612445 和 rs7790964)结合的五种变体进行了优先体外验证,这些变体位于心脏组织 eQTL 中。所有五种变体均改变了 NKX2-5 和 TBX5 DNA 结合。我们提出了一种生物信息学方法,该方法考虑了组织特异性 eQTL 分析和基于 SVM 的 TF 结合位点分类,以优先考虑 CVD 相关变体进行体外分析。