1科学技术学院,西尔西亚大学西尔西亚大学,萨尔科纳9,40-007 Katowice,波兰; Barbara.hachula@us.edu.pl 2物理研究所,科学技术学院,西里西亚大学,卡托维奇大学,波兰库索夫41-500pułkupiechoty 1a,波兰乔尔索夫41-500; taoufik.lamrani@us.edu.pl(T.L.); magdalena.tarnacka@us.edu.pl(M.T。); karolina.jurkiewicz@us.edu.pl(K.J.); patryk.ziola@us.edu.pl(P.Z.); anna.mrozek-wilczkiewicz@us.edu.pl(A.M.-W。); kamil.kaminski@us.edu.pl(k.k.)3 Biotechnology Center,Silesian技术大学,Boleslawa Krzywoustgo 8,44-100 Gliwice,Poland 4 44-100 44-100,44-100,44-100,44-100,44-100,44-100,44-100,44-100 Poland of Sosnowiec的药物学和植物学系,索斯诺维奇索斯诺伊奇索斯诺伊科克医科大学的索斯诺瓦尔索斯诺伊斯西亚氏病学院。 ekaminska@sum.edu.pl *通信:luiza.orszulak@us.edu.pl
Redwire Space Pharmaceutical Space实验室(PIL)为寻求在其结晶状态下使用目标分子的制药和机构研究人员提供服务,以重新制定现有产品和/或开发新产品的配方。此PIL-Box FC的独特之处在于它是一个自动化系统,能够支持需要操纵,组合和混合流体的结晶过程。PIL-BOX FC包含一个多流体环系统,该系统利用袋子,泵和阀门来控制流体处理操作。流体设计对于研究量表的量高度可配置,可扫描批量生产。
摘要:了解半导体聚合物的复杂结晶过程是有机电子技术进步的关键,因为这些材料的光电特性与其固态微结构密切相关。这些聚合物通常具有半刚性主链和柔性侧链,这导致它们在液态下具有强烈的组织/排序趋势。因此,这些材料的结晶通常发生在表现出至少部分分子有序的液态中。然而,先前存在的分子顺序对半导体聚合物甚至任何聚合物结晶过程的影响迄今为止仍是未知的。本研究采用快速扫描量热法 (FSC) 探测聚(9,9-二- n -辛基芴基-2,7-二基) (PFO) 在各向同性无序熔融状态 (ISO 状态) 和液晶有序状态 (NEM 状态) 下的结晶动力学。我们的结果表明,预先存在的分子顺序对 PFO 的结晶有着深远的影响。更具体地说,它有利于有效晶体成核中心的形成,从而加速相变早期阶段的结晶动力学。然而,与从 ISO 状态结晶的样品相比,从 NEM 状态结晶的样品需要更长的时间才能达到完全结晶(在二次结晶阶段),这可能表明预先存在的分子顺序减慢了结晶最新阶段的进展,即受分子扩散控制的阶段。数据与 Avrami 模型的拟合揭示了不同的结晶机制,最终导致独特的半结晶形态和光致发光特性。因此,这项工作强调了理解聚合物半导体的加工、结构和特性之间的相互关系的重要性,并为通过新开发的 FSC 方法对此类材料进行基础研究打开了大门,而这在传统技术中是不可能实现的。■ 简介
摘要:最近,结果表明,添加SIO 2和Al 2 O 3的Bi 2 O 3玻璃的纳米结晶导致δ-样BI 2 O 3相的稳定至少至室温,这显着在其稳定性范围以下显着。在这项研究中,我们研究了与Sio 2,Geo 2,B 2 O 3和Al 2 O 3合成的生物塑料玻璃的性质。证明,使用标准熔炉途径可以使用所有这些系统的玻璃化。此外,我们使用热分析和高温XRD的原位实验研究了原始眼镜中的结晶过程。表明,可以稳定固定在残留的玻璃矩阵中到室温的δ -bi 2 o 3的等级结构。类似δ相的外观的温度范围很大程度上取决于玻璃的标称组成。我们假设实现效果取决于残留玻璃基质的局部特性及其引入能力的能力,以拉伸纳米晶体中δ-样BI 2 O 3相的结构。
a。新兴电子技术主席,德累斯顿技术大学,NöthnitzerStr。61,01187德累斯顿,德国b。 Leibniz固态与材料研究所Dresden,Helmholtzstraße20,01069德累斯顿,德国c。德累斯顿技术大学德累斯顿推进电子中心,Helmholtz Str。18,01069,德累斯顿,德国 *电子邮件:yana.vaynzof@tu-dresden.de使用溶剂工程方法制造金属卤化物钙钛矿膜的制造越来越普遍。在这种方法中,钙钛矿层的结晶是通过在钙钛矿前体溶液旋转过程中施加反溶剂的。在此,我们介绍了对溶剂工程形成的钙钛矿层结晶过程的当前理解状态,尤其是针对抗溶性特性和溶剂 - 抗溶剂的相互作用的作用。通过考虑汉森溶解性参数的影响,我们提出了针对通过这种方法选择适当的反溶剂和轮廓开放问题和未来研究方向的指南。
摘要 - 光子综合电路(图片)是片上光学技术的基础。MACH-ZEHNDER调制器(MZM)是图片的有吸引力的构件,这些图片主要依赖于材料中弱且挥发性的光学效应。相比之下,相变材料(PCM),例如GE 2 SB 2 SE 4 TE 1(GSST)是有前途的候选人,可以实现有效且非易失性的可重构光学设备。然而,PCM的相跃迁伴随着其折射率的假想部分的大大变化,这使得MZMS的设计具有挑战性。在本文中,引入了两种称为“损失平衡”和“均衡”的有趣设计方法,以提出基于GSST的高性能MZM。在这方面,提出了以石墨烯为基础的基于GSST的波导,该波导在两种引入方法中都扮演着可构型活性波导的作用。根据提出的分析,在1550 nm的波长下,活性长度为4.725 µm,插入小于2 dB的非易失性MZM是可实现的。最后,对提出的基于GSST的波导进行热模拟,以便估计要进行非晶化(擦除)和结晶过程所需的电压分别为12 V和4.3 V。
X 射线晶体学在药物发现和开发中至关重要,因为它可以提供有关目标蛋白质及其与 1 种潜在候选药物相互作用的详细结构数据。本综述旨在概述 X 射线晶体学在制药行业中的应用,重点介绍其在理解蛋白质-配体相互作用、指导合理药物设计和帮助基于结构的药物优化方面的作用。该研究利用来自各种来源的二手数据,包括已发表的研究文章、评论论文和数据库,全面回顾了 X 射线晶体学在药物发现中的现状。涵盖的关键主题包括 X 射线晶体学的基本原理、蛋白质结晶过程、数据收集和结构测定,以及与该技术相关的挑战和局限性。通过强调 X 射线晶体学在药物发现中的成功和局限性,本综述旨在提供见解,帮助研究人员优化这一强大工具在开发新型疗法中的使用。最终,更好地了解 X 射线晶体学在药物发现和开发中的作用可以设计出更有效、更具体、安全性更高的药物分子。
大型有机铵离子的掺入使卤化物钙钛矿复合物的结晶动力学和层形成过程,难以控制,并导致抑制电荷转运的问题,并形成很小的晶粒。在本文中,在前体溶液中引入了氯化甲基(MACL)和过量的PBI 2作为共同辅助剂,以控制苯基甲基铵或苯甲酰胺或苯甲酰胺(PMA + SPACER)(PMA + SPACER)和基于基于fa +)基于fa +)的Quasi-2d pma 2d pma + 1 pba n i i。钙钛矿层的形成。通过这种方法,层的形态,内相分布和电荷传输特性得到改善。采用光泽放电光学光谱(GD-OES)和其他技术,据揭示了在共同添加剂存在下制备的准2D perovskites在整个过程中表现出均匀的溶剂清除动力学。此外,在热退火时,晶粒生长模式是侧向的。它产生了具有低陷阱状态密度和出色的底物覆盖率的大型,整体晶粒。尤其是,共同添加剂在结晶过程上改善了阳离子的分散,从而抑制了通过间隔阳离子的聚集形成的低N相并加速了高N期的形成。
为了对溶液中的卤化物钙钛矿加工产生详细的理解,在Mapbi 3对Mapbi 3的自旋涂层和插槽-DIE涂层中进行了不同的蒸发速率,以不同的蒸发速率进行了研究。基于光学参数的时间演变,发现两种处理方法最初都形成了溶剂 - 复合结构,然后是钙钛矿结晶。后者分为两个阶段进行自旋涂层,而对于插槽涂层,仅发生一个钙钛矿结晶阶段。对于两种处理方法,发现随着蒸发速率的增加,溶剂复合物结构的结晶动力学和钙钛矿结晶在相对时间尺度上保持恒定,而第二次钙钛矿结晶的持续时间在自旋涂层中增加。第二个钙钛矿结晶由于溶剂 - 复合相形态的差异而受到限制,钙钛矿形成了。工作强调了确切的前体状态特性对钙钛矿形成的重要性。进一步证明,多模式光学原位光谱的详细分析允许对卤化物钙钛矿溶液处理过程中发生的结晶过程进行基本了解,而与特定的处理方法无关。
摘要。金属卤化物钙钛矿材料在钙钛矿太阳能电池和发光二极管中迅速前进,这是由于其优质的光电特性。钙钛矿光电设备的结构包括钙钛矿活动层,电子传输层和孔传输层。这表明优化过程随着复杂的化学结晶过程和复杂的物理机制之间的复杂相互作用而展开。钙钛矿光电学中的传统研究主要取决于试验和错误实验,这是一种效率较低的方法。最近,机器学习的出现(ML)已大大简化了优化过程。由于其强大的数据处理能力,ML在发现潜在模式和做出预测方面具有显着优势。更重要的是,ML可以揭示数据中的潜在模式并阐明复杂的设备机制,从而在增强设备性能中起关键作用。我们提出了将ML应用于Perovskite光电设备的最新进步,涵盖了钙钛矿活动层,传输层,接口工程和机制。此外,它还为未来的发展提供了预期的前景。我们认为,ML的深层整合将大大加快钙钛矿光电设备性能的全面增强。