在过去的二十年中,在结构工程师中,不仅是在航空航天行业工作的人,对复合材料的重要性和使用都越来越多。它们的利用率已从采用劳动力密集型手工制造工艺的中间技术系统发展到裁缝的高科技汽车制造方法。滤清器和热压技术。以前的过程用于使负载轴承和半载轴承填充面板(主要是iSo-Tropic本质上)在七十年代初变得很流行,并且仍然被利用。后一种生产技术用于生产高科技复合结构,这些结构本质上是各向异性的;为了利用高强度和刚度,将纤维放置在结构中最有利的位置和方向上。要有效,有效地使用这些复合材料,需要详细的分析和设计。对于许多在常规结构材料方面接受培训和经验的工程师来说,进行复合材料进行分析和设计似乎是一项艰巨的任务。通过引入聚合物和纤维来消除复合材料的奥秘,以表格形式和简单方程式讨论制造技术,以赋予材料设计,结构单元,结合和螺栓固定的关节系统的制造技术。本手册的目的。因此,将工程师引入纤维和聚合物矩阵,这些矩阵是结构工程的聚生物复合材料的组成部分。使用新材料,必须了解他们在负载和自然环境中如何在公认的终生中行事;因此,本手册的结尾包含许多案例研究。此外,本书将以表格形式提供一个简单的指南,用于主要制造技术,简单的设计公式以及结构复合系统和连接的方法;给出了进一步阅读的参考。这些章节没有提供详尽的图片,但希望他们能以清晰的方式介绍复合材料的设计方面,从而导致设计技术的进一步高级研究。
凝聚微孔网络在气体和能量存储、传感和催化应用方面受到了广泛关注。1 9,9'-螺二芴基序对电子应用尤其重要,2,3 也已成为一种流行的结构单元,可作为扭曲位点来创建具有内在微孔性的材料。4-23 Yamamoto 将易得的 2,2',7,7'-四溴-9,9'-螺二芴与 Ni(COD) 2 偶联,可产生非常高表面积的微孔网络,并且在类似条件下与刚性二溴化芳香支柱进行共聚,可为材料提供可调的光学和气体吸附性能。24,25 其他方法也从 2,2',7,7'-四溴-9,9'-螺二芴试剂开始产生了均聚物或共聚物网络。目前对基于 9,9'-螺二芴更四面体导向的 3,3',6,6' 位聚合的缩合网络的探索相对较少,这可能是由于在 3,3',6,6' 位选择性卤化固有的挑战性所致。最近在 3,3',6,6' 位选择性卤化的一项策略是先在 2,2',7,7' 位进行初始甲氧基化,然后与 I 2 /PIFA 反应,得到 2,2',7,7'-四碘-3,3'6,6'-四甲氧基-9,9'-螺二芴前体。26 对该前体的进一步修饰产生了核碱基修饰的四足体。 27 随后,四炔通过 Sonogashira 和乙炔偶联反应聚合,生成螺二芴骨架,可作为 Pd 和 Pt 催化氢化的载体。28 3,3',6,6'-
聚合物太阳能电池(PSC)因其机械柔性、重量轻和大规模卷对卷制造等优势,作为一种有希望的可再生能源技术而备受关注。近年来,PSC 取得了长足的进步,这得益于新型光伏材料的开发和活性层形貌的调节。到目前为止,使用 p 型聚合物作为供体和 n 型小分子作为受体的 PSC 的光电转换效率(PCE)已超过 19%。其中,全 PSC 因其更高的热稳定性和机械柔性而被视为最有希望实现商业应用的候选材料之一。随着人们对聚合物受体材料的设计和合成投入巨大努力,包括苝二酰亚胺 (PDI)、萘二酰亚胺 (NDI)、B ← N- 桥联吡啶聚合物和聚合小分子受体 (PSMA),光伏性能得到了显着提高,PCE 超过 18%。与 PDI、NDI 和 B ← N 型聚合物受体相比,PSMA 因其吸收范围更广、吸收系数更强而受到更多关注。为了进一步提高全 PSC 的 PCE,合成高性能聚合物受体和精细调节活性层形貌至关重要。由于 Y 系列 SMA 在 PSC 中的巨大成功,一种广泛使用的合成聚合物受体的方法是聚合 Y 系列 SMA(图 1)。Wang 等人。 (2020) 报道了一种以 Y5-C20 为结构单元、噻吩为桥联单元的 PYT 窄带隙 PMSA,并详细研究了不同分子量对 PYT 光电性能和活性层形貌的影响。结果表明,中等分子量的 PYT 与 PM6 表现出合适的混溶性,有利于获得更均衡的载流子迁移率、更强的分子间聚集性、更有序的特性、更高的电荷传输能力和更少的能量损失,与低分子量和高分子量的 PYT 相比,其光伏性能提高了 13.44%。此外,当在分子主链上采用三种不同功能单元的无规共聚时,可以通过改变不同部分的摩尔比来轻松调节所得聚合物的能级和吸收光谱等光电性能。基于这一策略,Du 等人(2020) 通过随机共聚 3-乙基酯噻吩 (ET) 与 A-DA ' DA 型 SMA 单元 (TPBT-Br) 和噻吩桥联单元,合成了一系列三元共聚物 PMSAs PTPBT-ET xs。研究发现