4.MARC (~arc .@alysis ~esearch ~orporatlon) 是一个通用有限元程序,用于弹性分析和具有大位移的结构的非线性静态分析。元素库包含二维和三维元素以及板和壳元素。该程序特别适用于解决弹塑性和蠕变问题。塑性行为基于各向同性、弹塑性、时间相关材料理论,具有 VCNTMiaes 屈服准则、各向同性或运动应变硬化、温度相关弹性特性和等效屈服应力。蠕变行为基于 von Mises 流动准则,各向同性行为由用户指定的等效蠕变速率定律描述。该图使用切线模量法计算塑性,使用迭代初应变法计算蠕变。
非致病细菌可以通过动员和供应养分,保护病原体并减轻非生物胁迫来实质性地促进植物健康。但是,全基因组关联研究的数量报告了对受益微生物群体各个成员的遗传结构的遗传结构。在这项研究中,我们在条件下建立了一项全基因组的关联研究,以估计162个拟南芥的162次植物变异水平和潜在的遗传结构,该拟南芥的加入来自法国西南部的54个自然种群,响应于法国西南部,响应于13种二种菌株的二种菌株,这些菌株与较丰富的非植物构图相同,构成了叶子的隔离,并构成了叶子的隔离,并构成了叶子的分离。 地区。使用高通量表型方法来评分与营养生长相关的特征,在这些物种和菌株
采用特征模态分析法分析大坝结构响应,以捕捉无静水压力和流体动力的自由振动效应。然后,将使用模态响应分析纳入水库的影响。必须考虑激励频率和最小振动周期来选择积分的时间步长。根据美国陆军军团的描述,引入地震荷载时可以使用 0.01 秒的时间步长,这可以充分数字化加速度时间历史荷载。通常,可以使用振动模式的周期确定时间步长,使用 t≤T p /10,这将提供可靠的结果。这里使用 0.02 秒的时间步长来减少计算时间。
(1) 模态叠加法通过叠加船体振动模态响应得到的应力分量来计算结构应力响应。(2) 根据船体振动分析选择水弹性模拟中要使用的特征模态。(3) 对于将要进行疲劳强度评估的单元,应获得相对于所选特征模态的应力变换矩阵。(4) 应力时间序列是通过结合水弹性模拟计算出的模态响应时间序列和从 (3) 获得的应力变换矩阵来计算的。(5) 通常,模态叠加中使用的特征模态数越多,结构响应的精度就越高。然而,由于包括局部变形在内的高阶模态会对结构响应产生影响,因此模态叠加法的特征模态需要经过验证后谨慎选择。
b. 地震荷载的设计和评估必须考虑特定于项目特征的风险评估、地震分析和评估。所需的工作量可能因地下条件、施工和运营细节而有很大差异。范围必须考虑与地震相关的地面运动和其他地震灾害特征。这些地面运动和其他地震灾害特征包括断层破裂、地震强烈震动、地震引起的山体滑坡、液化、周期性软化和地震震积等情况。地震灾害和性能评估将包括地质条件、场地特征、结构或路堤条件、结构响应、功能性(地震后可操作性)和其他可能因地震而加剧的现有静态潜在危险(如山体滑坡和后向侵蚀管道)。包括基于项目特征类型的地震或地震地面运动和相关性能水平
为了推进直接激光写入 (DLW) 的应用,打印结构的适应性至关重要,这促使人们转向打印由不同材料组成和/或可以根据需要部分或全部擦除的结构。然而,包含这些特征的大多数结构通常通过复杂的过程打印或需要苛刻的显影技术。本文介绍了一种用于 DLW 的独特光刻胶,它能够打印可通过暴露在黑暗中擦除的 3D 微结构。具体而言,基于光稳定动态材料的微结构在持续受到绿光照射时保持稳定,但一旦关闭光源就会降解。通过延时扫描电子显微镜深入分析了打印材料的降解和光稳定性。结果表明,这些光刻胶可用于赋予打印结构响应行为,并且至关重要的是,可用作临时锁定机制来控制移动结构特征的释放。
地震在世界各地肆虐,对建筑物造成了大量破坏,但仍有许多建筑物不符合现行抗震规范要求,因此需要进行抗震加固。在许多情况下,地震引起的破坏主要集中在低层钢筋混凝土 (RC) 结构上,这些结构的基本自振周期接近地震的主频。人们提出了不同的方法来减轻结构响应并耗散地震引起的能量 (Kim 2019)。增加钢支撑等额外刚度是传统且广泛使用的抗震加固技术 (Park et al . 2012, Maheri and Yazdani 2016, Mohammadi et al . 2020))。此外,采用狭缝阻尼器等金属耗能装置也被认为是结构抗震设计和加固的另一种有效手段(Zhang et al. 2015;Lee and Kim 2017;Javidan and Kim 2020;Dereje and Kim 2022)。
本文提出了一种基于全局-局部建模方法的轻型结构多尺度优化策略。该方法应用于民用飞机的实际机翼结构。机翼的初步设计可以表述为一个约束优化问题,涉及结构不同尺度的若干要求。所提出的策略有两个主要特点。首先,问题以最一般的意义来表述,包括每个问题尺度所涉及的所有设计变量。其次,考虑两个尺度:(i)结构宏观尺度,使用低保真度数值模型;(ii)结构中观尺度(或组件级),涉及增强模型。特别是,结构响应在全局和局部尺度上进行评估,避免使用近似分析方法。为此,完全参数化的全局和局部有限元模型与内部遗传算法交互。只为结构最关键的区域创建精炼模型,并通过专用的子建模方法链接到全局模型。
刺激性响应性的“智能”材料可以积极响应外部田地并实时改变其微观或纳米结构,这是灵活显示器中未来技术的基础[1-3],生物传感器[4],有机光发射二极管[5,6]和薄膜膜片摄影膜片呈现图形细胞[7-9]。这些结构响应可以导致物理性质的显着增强,例如光反射率[10-12],热电传导率[13-15]或机械强度[14,15],打开了越来越复杂的应用。热响应聚合物溶液是响应式材料的一个例子,这些材料显示出随温度变化而显示出巨大的微结构响应。表现出较低临界溶液温度(LCST)的聚合物由于溶解度恶化而随着温度的增加而经历构象变化。高于此解散温度,发生宏观相分离。最彻底研究的热响应聚合物溶液之一是水(N-异丙基丙烯酰胺)(PNIPAM)[16] [16],其在接近体温(〜32°C,依赖于聚合物特性)的LCST附近。