如今,半导体公司经常将芯片的生产外包,以满足对综合电路的不断增长的需求。因此,芯片供应链现在正在处理许多安全问题,例如硬件知识产权盗窃,特洛伊木马和生产过多。在对手攻击有可能造成巨大损失或损害的关键系统中,零信托提供了一种有希望的方法来保证综合电路(ICS)的有效性。可靠的协议,利用证书保证ICS的合法性是安全协议和数据模型(SPDM)。这项研究的工作提出了基于SPDM协议的安全芯片到芯片(S2C)零值安全体系结构,该协议试图在使用之前对任何附带的外围设备进行身份验证。这些贡献包括对拟议设计的全面解释,SPDM协议的实现以及对执行和实施时遇到的障碍的讨论。关键字:芯片到芯片通信,零值体系结构,SPDM,嵌入式系统
摘要:Triply周期性最小表面(TPMS)构成了一种超材料,从其微观结构拓扑中得出了其独特的特征。它们表现出广泛的参数化可能性,但很难预测它们的行为。本研究的重点是使用一种隐式建模方法,该方法可以有效地产生新型的薄壁超材料,提出了八个基于壳的TPMS拓扑结构和一个随机结构,以及甲状腺作为参考。洞悉提出样品的可打印性和设计参数后,进行了细胞同质性分析,表明每个细胞结构的各向异性水平。对于每个设计的超材料,使用立体光刻(SLA)方法打印了多个样品,使用恒定的0.3相对密度和50 µm分辨率打印。为了理解其行为,进行了三明治样本的压缩测试,并确定了特定的变形模式。此外,该研究还使用开放的细胞数学模型估算了不同相对密度下新型TPMS核心的一般机械行为。统一拓扑的改变,并提出这些修改影响压缩响应的方式。因此,本文表明,隐式建模方法可以轻松生成新型的薄壁TPMS和随机结构,从而识别具有卓越特性的人为设计的结构,即辅助拓扑,例如某些甲状腺。
对威胁的检测和理解在制定任何形式的防御策略中起着重要作用;因此,提高检测能力,以及当今网络安全性动态世界的上下文见解非常重要。本文使用大型语言模型架构来理解网络威胁智能,以解释人工智能。我们的方法利用LLM的优越NLP分析大量威胁数据,并为可能的安全风险提供可行的,可理解的见解。我们引入了一个新的范式,通过该范式将LLMS整合到经典的CTI框架中可以实现复杂的威胁模式识别,并为每个检测到的威胁提供了人类可读的解释。这将增强AI驱动威胁分析的透明度和可信度,从而使决策变得更加容易,并更加由网络安全专业人员了解。在现实世界数据集上进行了广泛的测试,以验证我们的方法,表明我们的方法显着提高了与当前方法相比的威胁检测准确性和解释质量。这些发现表明,LLMS通过将相同的相同的CTI系统嵌入到弹性和适应性方面,可以显着提高网络安全工具功效。
本文主要讨论了CPU的开发以及基于RISCV的一些指令集架构。CPU被称为中央处理单元,主要应用是RISCV,并且ARM架构的特点是重点是低功耗和高性能之间的平衡。然后x86,其重要优势是其复杂的指令集和出色的性能,因此它可以处理复杂的计算任务。我们还探索了管道技术,它是当今广泛使用的并行处理技术。设计原理是将复杂的多级组合逻辑电路分为多个级别。然后,我们找到一些实验数据来探讨我们的结论。我们发现每个人都有自己的优势,并且更适合不同的情况。在性能方面,X86提供了出色的功能,但会消耗更多的功能,使其非常适合高性能计算和服务器应用程序。手臂在功率效率方面表现出色,并在移动设备和嵌入式系统中找到了其主要用途。RISC-V以其灵活性而闻名,可以根据特定要求在性能和功耗之间保持平衡,使其适合于高度自定义的应用程序,IoT设备以及新兴的高性能计算市场。不同字段中每个体系结构的优点取决于特定的应用程序环境以及对它们的要求。关键字:RISC-V Architecturecpu性能评估管道技术
挑战和机遇•由于使用FEP+的P-Loop使用的动态性质,提高效力和选择性是具有挑战性的•HPK1的灵活性增强为HPK1 P-Loop和Glk P-Loop的选择性覆盖提供了
摘要背景对于肝细胞癌(HCC)中对检查点免疫疗法的反应的决定因素仍然很了解。预计肿瘤微环境(TME)中免疫反应的组织有望控制免疫疗法的结局,但空间免疫型仍然很差。目的我们假设空间免疫网络体系结构的反卷积可以鉴定HCC中临床相关的免疫型。设计,我们对101例患者的HCC组织进行了高度多重的成像质量细胞仪。我们在发现和验证队列中进行了深入的空间单细胞分析,以否定HCC免疫结构异质性的决定因素,并开发了用于预测免疫检查点抑制剂(ICI)疗法的空间免疫分类。结果生物信息学分析确定了HCC TME中的23个主要免疫,基质,实质和肿瘤细胞类型。无监督的邻域检测确定了三个免疫结构,具有不同的免疫细胞参与和以CD8 T细胞,髓样免疫细胞或B和CD4 T细胞为主的免疫检查点。我们使用这些定义了三种主要的空间HCC免疫型,这些免疫型反映了更高水平的肿瘤内免疫细胞组织:耗尽,分隔和富集。在ICI治疗下的无进展生存期在空间免疫类型之间显着差异,富集患者的存活率提高。在肿瘤内异质性患者中,一个富集区域的存在控制了长期生存。
摘要:聚(ADP-核糖)聚合酶 1(PARP1)抑制剂通过合成致死彻底改变了许多具有 DNA 修复缺陷的癌症的治疗方法。在多药理学概念的倡导下,最近的证据发现,同时扰乱溴结构域蛋白 4(BRD4)和 PARP1 的酶活性可显著增加癌细胞的死亡率。在此,我们开发了一种新颖的化学信息学方法,结合基于结构的方法,旨在促进双 PARP1-BRD4 抑制剂的设计。所开发的方法不是连接药效团,而是首先识别合并药效团(一组含酰胺的环系统),然后进一步从中优先考虑菲啶-6(5 H )-酮。基于此出发点,合理设计了几种小分子,其中HF4对BRD4和PARP1表现出低微摩尔抑制活性,特别是对BRD4 BD1表现出强烈的抑制作用,IC 50值为204 nM。此外,它通过阻止细胞周期进程和阻止DNA损伤修复,对乳腺癌基因缺陷和乳腺癌细胞系表现出强大的抗增殖作用。总之,我们设计类先导分子的系统努力有可能为探索双重PARP1-BRD4抑制剂作为乳腺癌治疗的有希望的途径打开大门。此外,所开发的方法可以扩展到系统地设计针对PARP1和其他相关靶标的抑制剂。■简介传统的药物发现主要侧重于设计对其主要靶标具有高度选择性和效力的化学实体。这种单靶点治疗策略强烈地遵循将疾病表型与特定蛋白质功能丧失联系起来的直接因果关系。 1 − 3 然而,疾病尤其是多因素疾病通常被认为是涉及多个目标的生理网络通路中的异常信号转导。 4 因此,基于网络药理学概念,5 化合物的多靶点谱在近几十年的药物发现过程中日益受到重视,并代表了治疗包括肿瘤学和神经退行性疾病在内的复杂和多因素疾病的有效策略。 6 − 9
摘要背景对于肝细胞癌(HCC)中对检查点免疫疗法的反应的决定因素仍然很了解。预计肿瘤微环境(TME)中免疫反应的组织有望控制免疫疗法的结局,但空间免疫型仍然很差。目的我们假设空间免疫网络体系结构的反卷积可以鉴定HCC中临床相关的免疫型。设计,我们对101例患者的HCC组织进行了高度多重的成像质量细胞仪。我们在发现和验证队列中进行了深入的空间单细胞分析,以否定HCC免疫结构异质性的决定因素,并开发了用于预测免疫检查点抑制剂(ICI)疗法的空间免疫分类。结果生物信息学分析确定了HCC TME中的23个主要免疫,基质,实质和肿瘤细胞类型。无监督的邻域检测确定了三个免疫结构,具有不同的免疫细胞参与和以CD8 T细胞,髓样免疫细胞或B和CD4 T细胞为主的免疫检查点。我们使用这些定义了三种主要的空间HCC免疫型,这些免疫型反映了更高水平的肿瘤内免疫细胞组织:耗尽,分隔和富集。在ICI治疗下的无进展生存期在空间免疫类型之间显着差异,富集患者的存活率提高。在肿瘤内异质性患者中,一个富集区域的存在控制了长期生存。
1。Kim,Y.-K。和Al。,复合材料B部分B。 210,108638。 2。 Zhou,J。和Al。,《合金与化合物杂志》,2021年。 859,157851。 3。 He,M.Y。和Al。,今天应用的材料,2021年,第1卷。 25,101162。 4。 Taherini,S。和Al。,Actathroad,2021年,第1卷。 208,116714。 5。 Mehranpour,M.S。和Al。 793,139884。 6。 Han,B。和Al。,2022年,第1卷。 434,128241。 7。 Singh,S。和Al。,材料,2020年,第1卷。 14,100917。 8。 Light,T。和Al。,Letters,2021,第1卷。 293,129682。 9。 Bahrami,A。和Al。,《合金与化合物杂志》,2021年,第1卷。 862,158577。 10。 Xiao,J.-K。和Al。,《合金与化合物杂志》,2020年,第1卷。 847,156533。 11。 Neto,A.H。和Al。,《现代物理学评论》,2009年,第1卷。 81,109-162。Kim,Y.-K。和Al。,复合材料B部分B。210,108638。2。Zhou,J。和Al。,《合金与化合物杂志》,2021年。859,157851。3。He,M.Y。和Al。,今天应用的材料,2021年,第1卷。25,101162。4。Taherini,S。和Al。,Actathroad,2021年,第1卷。208,116714。5。Mehranpour,M.S。和Al。793,139884。6。Han,B。和Al。,2022年,第1卷。434,128241。7。Singh,S。和Al。,材料,2020年,第1卷。14,100917。8。Light,T。和Al。,Letters,2021,第1卷。293,129682。9。Bahrami,A。和Al。,《合金与化合物杂志》,2021年,第1卷。862,158577。10。Xiao,J.-K。和Al。,《合金与化合物杂志》,2020年,第1卷。847,156533。11。Neto,A.H。和Al。,《现代物理学评论》,2009年,第1卷。 81,109-162。Neto,A.H。和Al。,《现代物理学评论》,2009年,第1卷。81,109-162。