摘要:在这篇观点文章中,我们表明,基于信息理论措施的形态空间可以是将生物学剂与人工智能(AI)系统进行比较的有用构造。该空间的轴标记了三种复杂性:(i)自主神经,(ii)计算和(iii)社会复杂性。在这个空间上,我们绘制了细菌,蜜蜂,秀丽隐杆线虫,灵长类动物和人类等生物学剂;以及AI技术,例如深神经网络,多代理机器人,社交机器人,Siri和Watson。基于复杂性的概念化为识别定义特征和有意识和智能系统的类别提供了有用的框架。从评估意识和清醒的意识的认知和临床指标开始,我们询问AI和合成工程的生命形式如何衡量同源指标。我们认为,意识和清醒源于计算和自主性复杂性。此外,从认知机器人技术中挖掘见解,我们研究了意识在进化游戏中的功能作用。这表明描述意识的第三种复杂性,即社会复杂性。基于这些指标,我们的形态空间提出了除生物学以外的其他意识的可能性。即合成,基于组和模拟。这个空间提供了一个常见的概念框架,用于比较特质和突出设计原理。
*英语系,艺术学院,国王菲萨尔大学,阿尔阿萨,沙特阿拉伯,随着教育的发展,以满足21世纪学习的需求,传统的评估方法越来越被视为不足以捕捉现代教育的复杂性。本文探讨了人工智能在重塑评估实践中的变革潜力。通过预期思维的视角,该论文研究了当前的AI教育应用程序,其局限性以及AI驱动的评估如何应对传统方法面临的挑战。通过探索个性化,自适应和数据驱动的评估,本文设想了一个未来,AI不仅可以提高评估的准确性和公平性,而且还支持批判性思维,创造力和协作中的技能发展。讨论还深入研究了将AI整合到评估中的道德和实践挑战,包括对偏见,透明度和数据隐私的担忧。最终,本文倡导采取平衡,具有前瞻性的方法,该方法将AI整合到教育评估中,同时保持人类的监督以确保公平,问责制和促进整体学生发展。Keywords: Anticipatory thinking, AI in education, AI-driven assessments, adaptive assessment, 21st-century skills, test bias, ethical AI, data privacy in education *Author for correspondence: Email: afridan@kfu.edu.sa Receiving Date: 10/07/2024 Acceptance Date: 20/08/2024 DOI: https://doi.org/10.53555/ajbr.v27i3.2560©2024作者。本文已根据创意共享属性 - 非商业4.0国际许可(CC BY-NC 4.0)的条款发表,该条款允许在任何媒介中不受限制地使用,分发和复制,只要提供以下声明。“本文发表在《非洲生物医学研究杂志》上”的介绍,近年来,教育评估领域经历了深刻的转变,这是由技术进步和教学方法的重大变化驱动的(Challis,2005)。长期以来一直以标准化的测试和以教师为中心的评估来控制的传统评估方法越来越多地被视为不足以满足21世纪学习的需求。这些常规方法,同时提供了评估学生成就的统一手段,但无法捕捉数字时代学习的复杂性和多方面性质。随着我们继续深入到这个前所未有的技术创新时代,需要更灵活,创新和前瞻性评估
长期以来,人们一直认为只有人类才能创造和理解语言。但现在,人工语言模型 (LM) 首次实现了这一壮举。在这里,我们调查了 LM 在语言如何在大脑中实现的问题上提供的新思路。我们讨论了为什么 LM 可能与人类语言系统具有先验相似性。然后,我们总结了证据表明 LM 以与人类足够相似的方式表示语言信息,从而能够在语言处理过程中实现相对准确的大脑编码和解码。最后,我们研究了哪些 LM 属性(它们的架构、任务性能或训练)对于捕捉人类对语言的神经反应至关重要,并回顾了使用 LM 作为计算机模型生物来测试语言假设的研究。这些正在进行的研究使我们更接近于理解我们理解句子和用语言表达思想的能力背后的表征和过程。
长期以来,人们一直认为只有人类才能创造和理解语言。但现在,人工语言模型 (LM) 首次实现了这一壮举。在这里,我们调查了 LM 在语言如何在大脑中实现的问题上提供的新思路。我们讨论了为什么 LM 可能与人类语言系统具有先验相似性。然后,我们总结了证据表明 LM 以与人类足够相似的方式表示语言信息,从而能够在语言处理过程中实现相对准确的大脑编码和解码。最后,我们研究了哪些 LM 属性(它们的架构、任务性能或训练)对于捕捉人类对语言的神经反应至关重要,并回顾了使用 LM 作为计算机模型生物来测试语言假设的研究。这些正在进行的研究使我们更接近于理解我们理解句子和用语言表达思想的能力背后的表征和过程。
对比,ML Tictactoe播放器学会了不要从游戏数据库或反复玩游戏中丢失游戏。在更复杂的问题中,对基于规则的AI进行编程,该规则可以预期系统中所有可能的状态很快变得不可行。mL方法通常分为三类:监督学习,不受欢迎的学习和强化学习。在监督学习中,ML算法从数据中学习输入和输出对之间的关联。输出是监督信号,模型学会从输入中推断出来。例如,一个计算机从包含借款人(输入)特征的数据集中学习(输入)(输出)。然后使用该模型来预测未来的借款人是否可能默认。在无监督的学习中,ML模型在输入数据中发现模式。没有输出(监督信号)。例如,一个无监督的ML模型群集借款人会根据其相似性或识别相对于整个数据集的异常数据点。在增强学习中,计算机代理试图在导致最大奖励的环境中识别动作顺序。代理需要探索环境以学习最佳策略。例如,强化学习者通过多次对抗来掌握棋盘游戏来掌握棋盘游戏。该系统的设计使得代理在赢得游戏时会获得奖励,并且在输掉比赛时会受到惩罚。,2018年),监督模型,从图像中检测皮肤癌(Esteva等人,2018年)。代理人仅编程以寻求奖励,但是在开始学习之前,没有任何策略配备任何策略。近年来,AI的许多里程碑成功,例如强化学习代理人玩耍(Silver等人,2017年),或者可以编写连贯文本的无监督语言模型(Brown等人,2020)基于深度人工神经网络,也称为深度学习。通过将输入数据从网络中的图层传递到图层,以越来越抽象的方式表示。提供了足够的数据点,可以从其中学习有意义的表示,深度学习模型可以从非结构化高维数据(例如图像,文本和声音)中提取信号。这是一项更传统的ML方法的任务。在许多AI应用中,人类和机器共同运行既稳定又有效的系统。财务系统也不例外。对于财务系统,稳定性是指吸收冲击的能力,同时防止对真实经济的破坏(Schinasi,2004年)。许多出色的论文已全面审查了AI在财务部门的应用,几项研究集中在其财务稳定性的暗示上(金融稳定委员会,2017年; Danielsson等人。,2019年; Gensler和Bailey,2020年)。我们的论文重点关注这些应用程序(从交易和贷款到监管和政策制定)最好地说明了人类和机器的一些优势和劣势。,2006年; Bacoyannis等。,2015年)。例如,在算法交易中使用AI具有明显的执行速度和同时考虑大量信息的能力(Nevmy-Vaka等人。此外,算法交易者不太可能犯错或有偏见的非理性决定(Jain等人,但大多数AI代理都是
为营养科学和卫生专业社区以及食品行业的专业参与者提供了一般流通,包括Tate&Lyle食品成分的潜在客户。它不是为消费者使用而设计的。标签索赔,健康要求以及我们食材的监管和知识产权状况的适用性因管辖权而异。您应该获得有关我们成分的所有法律和法规方面及其在您自己的产品中使用的建议,以确定在任何特定司法管辖区中的特定目的,索赔,经营,标签或特定申请的适用性。此产品信息已发布供您考虑和独立验证。Tate&Lyle对其准确性或完整性不承担任何责任。
文献中讲了很多类比在思维中的重要性,但只给出了一个类比推理的例子。作者认为,类比在思维方面有着更广泛的含义,是三段论与隐喻、知觉与比较、归纳与演绎、抽象的分类与构造等思维机制的基本功能,这些都将在报告中举例说明。作者还批评了结构类比作为类比实现方式的主导假设,并提出了另一个基于上下文的类比原则。将展示如何从句法谓词获得词汇类比,这为基于神经网络以外的原理构建人工智能提供了基础。
世界。如果不使用数字孪生技术,就不可能制造出具有全球竞争力的现代化发动机:数字孪生技术是一套能够充分描述任何工作条件下结构行为的计算模型。如今,复合材料被广泛应用于许多行业。在航空发动机中,它们非常有前景地用于风扇叶片和风扇壳,以减轻发动机的总重量和惯性载荷。风扇叶片的燕尾榫接头在复合应力条件下工作。为了评估该元素的强度,需要考虑问题的三维公式,这需要大量的计算资源。复合材料的使用因准备网格模型的复杂性而变得复杂。正确选择材料强度标准是分析厚壁复合结构机械行为时必须考虑的另一个重要因素。所选标准在很大程度上决定了复合结构的可靠性和重量效率。本文探讨了在采用丹尼尔强度准则对碳纤维布风扇叶片燕尾榫接头进行初始阶段合理加固方案选择时,将问题三维表述替换为二维表述的可能性。
由于学习高维概率致密性的困难,用于新物理过程异常检测的方法通常仅限于低维空间。尤其是在组成级别上,在流行密度估计方法中,很难纳入理想的特性,例如突变不变性和可变长度输入。在这项工作中,我们基于扩散模型引入了粒子物理数据的置换不变的密度估计值,该模型是专门设计用于处理可变长度输入的。我们通过利用学习的密度作为置换式异常检测评分来证明我们的方法论的功效,从而有效地识别了仅背景假设下的可能性很小的JET。为了验证我们的密度估计方法,我们研究了学习密度的比率,并与受监督分类算法获得的密度相比。
分布的自传记忆在社会心理学理论中受到了极大的关注(例如,Harris,Barnier,Sutton&Keil,2014; Wegner,1986),在关于认知者与他们的人物环境之间的关系中,在很大程度上被忽略了。因此,本文的目的是通过讨论有关令人回味的对象和生命的经验工作,并概念化这些对象和技术如何整合到生物学记忆过程中,从而改变我们自传记忆的结构(Bell&Gemmell,2009年),来引起人们对人为自传的纪念的关注。在与回忆性的对象进行相互作用时,我们通常将信息整合到大脑和世界上,以构建自传记忆,从而使我们能够以与在没有此类对象的情况下记住过去完全不同的方式记住我们的个人过去。本文中的一个特定重点是自传依赖性的维度,这是我们依靠对象能够记住个人体验的程度。我将讨论各种程度的自传依赖性,范围从低至中等到强度。这种依赖性越强,记住我们个人过去的车辆和过程都越大。本文具有以下结构。我首先要确定两个参数,以支持扩展思维,一个基于奇偶校验,另一个基于代理和外部资源之间的互补性,将后者优先考虑(第2节)。i分类法对不同的人类记忆系统进行了简要描述人类自传记忆的某些特性(第3节)。接下来,我区分用于实用认知任务的认知文物和用于记住我们个人过去的回忆物体,重点是后者(第4节)。i以概念化自传依赖性的维度结束了本文(第5节),并进行了一个案例研究,其中概念化了代理与救生技术之间的整合程度(第6节)。