2.1 纳米比亚共和国政府 (GRN) 在非洲开发银行的资金支持下,正在实施交通基础设施改善项目 (TIIP)。该项目于 2017 年开始,铁路升级干预措施涵盖了沃尔维斯湾和克兰兹贝格之间的铁路线(210 公里)。政府现在计划通过 TIIP 第二阶段,再升级从克兰兹贝格到楚梅布和从奥塔维到赫鲁特方丹的约 500 公里铁路线。2.2 总体项目范围分为三个部分,即:(i) 第 1 部分 - 克兰兹贝格至奥奇瓦龙戈(约 224 公里);(ii) 第 2 部分 - 奥奇瓦龙戈至楚梅布(约 196 公里);以及第 3 部分 - 奥塔维 - 赫鲁特方丹(约 98 公里)。纳米比亚的铁路线横跨赞比西河走廊(沃尔维斯湾 - 恩多拉 - 卢本巴希走廊),目前终点为赫鲁特方丹。 2.3 TIIP 第二阶段是短期优先干预措施之一,是沃尔维斯湾 - 楚梅布(612 公里)铁路线升级的一部分。沃尔维斯湾 - 克兰茨贝格路段(210 公里)构成了纳米比亚铁路网的支柱,连接沃尔维斯湾港,
马丁·路德大学哈雷·韦滕伯格(Halle-Wittenberg)优先考虑具有同等资格的严重残疾候选人的申请。特别鼓励妇女申请。在德国高等教育机构未获得学位的申请人必须提交外国外国教育办公室(ZentralstellefürAusländischesbildungswesen)的外国高等教育资格的可比性声明,以证明其等价。
2022 年 5 月 30 日——USAG ANSBACH。美国班贝格陆军参谋长。美国陆军参谋长达姆施塔特。凯泽斯劳滕美国陆军航空队。美国陆军航空队海德堡分队。美国陆军参谋长曼海姆。IMCOM-欧洲。美国陆军参谋长斯金宁。USAG 布鲁塞尔。USAG 比荷卢经济联盟。
摘要 我们提出了一种用于近期量子设备的基于扫描的实验断层扫描方法。该方法的基础方法之前已在基于集合的 NMR 设置中引入。在这里,我们提供了教程式的解释以及合适的软件工具,以指导实验人员将其适应近期的纯态量子设备。该方法基于量子态和算子的 Wigner 型表示。这些表示使用由球谐函数的线性组合组装而成的形状提供了量子算子的丰富可视化。这些形状(以下称为液滴)可以通过测量旋转轴张量算子的期望值进行实验断层扫描。我们提出了一个用于实现基于扫描的断层扫描技术的实验框架,用于基于电路的量子计算机,并展示了 IBM 量子经验的结果。我们还提出了一种从实验断层扫描的 Wigner 函数(液滴)估计密度和过程矩阵的方法。可以使用基于 Python 的软件包 DROPStomo 直接实现此断层扫描方法。
摘要 众所周知,量子态的 Wigner 函数可以取负值,因此它不能被视为真正的概率密度。在本文中,我们研究了在相空间中寻找扩展到负 Wigner 函数的熵类函数的难度,然后主张定义与任何 Wigner 函数相关的复值熵的优点。这个量,我们称之为复 Wigner 熵,是通过在复平面上对 Wigner 函数的 Shannon 微分熵的解析延拓来定义的。我们表明,复 Wigner 熵具有有趣的特性,特别是它的实部和虚部在高斯幺正(相空间中的位移、旋转和压缩)下都是不变的。当考虑高斯卷积下 Wigner 函数的演化时,它的实部在物理上是相关的,而它的虚部仅与 Wigner 函数的负体积成正比。最后,我们定义任何维格纳函数的复值费希尔信息,当状态经历高斯加性噪声时,它与复维格纳熵的时间导数相关联(通过扩展的德布鲁因恒等式)。总的来说,预计复平面将为分析相空间中准概率分布的熵特性提供一个适当的框架。
• Jon Hanson 联合主席 • Jerry L. Hatfield 联合主席 • John Antle,蒙大拿州立大学,明尼苏达州,博兹曼 • James Ascough,ARS 柯林斯堡,科罗拉多州 • Bill Belotti,阿德莱德大学,澳大利亚 • Olaf Christen,哈雷-维滕贝格大学,德国 • Marcello Donatelli,CRA-CIN,意大利 • Carlo Giupponi,米兰大学,意大利 • Hans Langeveld,瓦赫宁根大学,荷兰 • Jay Norton,怀俄明大学,怀俄明州,拉勒米 • James Jones,佛罗里达大学,佛罗里达州 • Andrea Rizzoli,IDSIA-USI/SUPSI,瑞士 • Daniel Rodriguez APSRU,昆士兰州,布里斯班,澳大利亚 • Claudio Stockle,华盛顿州立大学,华盛顿州 • Martin van Ittersum,瓦赫宁根大学,荷兰 • Jacques Wery,UMR 系统 (Agro.M-Cirad-Inra),法国 • Jeffrey怀特,USDA-ARS,马里科帕,亚利桑那州
• Jon Hanson 联合主席 • Jerry L. Hatfield 联合主席 • John Antle,蒙大拿州立大学,明尼苏达州,博兹曼 • James Ascough,ARS 柯林斯堡,科罗拉多州 • Bill Belotti,阿德莱德大学,澳大利亚 • Olaf Christen,哈雷-维滕贝格大学,德国 • Marcello Donatelli,CRA-CIN,意大利 • Carlo Giupponi,米兰大学,意大利 • Hans Langeveld,瓦赫宁根大学,荷兰 • Jay Norton,怀俄明大学,怀俄明州,拉勒米 • James Jones,佛罗里达大学,佛罗里达州 • Andrea Rizzoli,IDSIA-USI/SUPSI,瑞士 • Daniel Rodriguez APSRU,昆士兰州,布里斯班,澳大利亚 • Claudio Stockle,华盛顿州立大学,华盛顿州 • Martin van Ittersum,瓦赫宁根大学,荷兰 • Jacques Wery,UMR 系统 (Agro.M-Cirad-Inra),法国 • Jeffrey怀特,USDA-ARS,马里科帕,亚利桑那州
摘要 我们提出了第一个多保真贝叶斯优化 (BO) 方法,用于解决原型量子系统的量子控制中的逆问题。我们的方法自动构建时间相关的控制场,从而实现初始和期望的最终量子态之间的转换。最重要的是,我们的 BO 方法在构建时间相关的控制场方面表现出色,即使对于难以用现有的基于梯度的方法收敛的情况也是如此。我们提供了我们的机器学习方法的详细描述以及各种机器学习算法的性能指标。总之,我们的结果表明 BO 是一种有前途的方法,可以有效、自主地设计一般量子动力系统中的控制场。
2003 - 2006 年德国空军办公室/波恩空军参谋部,北约 PCC 和欧盟 ECAP 战略空运临时解决方案