计算机使用 0 和 1 的语言,本质上是向称为晶体管的计算机部件发送开启和关闭信号。这些 0 和 1 已被翻译成称为 ASCII 二进制代码的代码,其中每个字母、数字和字符都有 8 位 0 和 1 的组合。ASCII 是计算机和互联网文本文件的最常见格式。它代表美国信息交换标准代码,使用数字来表示字母和特殊字符。二进制版本仅使用 8 位(或数字)模式中的 0 和 1。
参考文献:1. AFLURIA。包装说明书。Seqirus Inc. 2. 疾病控制与预防中心。CPT 代码映射到 CVX 代码。访问日期:2024 年 2 月 22 日。https://www2a.cdc.gov/vaccines/iis/iisstandards/vaccines.asp?rpt=cpt 3. 医疗保险和医疗补助服务中心。流感疫苗接种与管理。访问日期:2024 年 2 月 22 日。https://www.cms.gov/Medicare/Prevention/PrevntionGenInfo/medicare-preventive-services/MPS-QuickReferenceChart-1.html#FLU 4. 美国医学会。《2024 年现行程序术语》(专业版)。美国医学会;2023 年。5. 美国儿科学会。 2022 年儿科预防保健编码。访问日期:2024 年 2 月 22 日。https://downloads.aap.org/AAP/PDF/Coding%20Preventive%20Care.pdf
摘要 抗菌素耐药性 (AMR) 对人类健康构成重大威胁。尽管已经开发出疫苗来对抗 AMR,但将特定疫苗抗原与 AMR 关联起来却极具挑战性。细菌质粒在 AMR 的传播中起着至关重要的作用。我们最近的研究发现了一组细菌质粒(具体来说,IncHI 质粒),它们编码含有细菌免疫球蛋白样结构域的大分子量蛋白质。这些蛋白质位于细菌细胞的外表面,例如鞭毛或接合菌毛中。在这项研究中,我们表明这些蛋白质具有抗原性,可以保护小鼠免受携带其中一种质粒的 AMR 沙门氏菌菌株引起的感染。此外,我们成功生成了针对这些蛋白质的纳米抗体,这些纳米抗体被证明可以干扰 IncHI 质粒的接合转移。考虑到这些蛋白质也编码在其他质粒组中,例如 IncA/C 和 IncP2,针对它们可能是对抗由携带不同组 AMR 质粒的细菌引起的 AMR 感染的有效策略。由于选定的抗原与 AMR 本身直接相关,因此保护作用不仅限于特定微生物,还包括所有携带相应抗性质粒的微生物。
Axonics, Inc.(“Axonics”)已从第三方来源汇编了本指南中的信息,以方便您使用。此信息不构成报销或法律建议。Axonics 不保证 Medicare 或任何公共或私人付款人将承保任何特定级别的产品或服务,也不保证本指南中列出的代码将适用于 Axonics 疗法。Axonics 明确否认并排除与报销相关的任何陈述或保证。有关报销的法律、法规和付款人政策复杂且经常变化,医疗保健提供者负责与编码和报销提交相关的所有决定。请注意,本指南中的信息如有更改,恕不另行通知。医疗保健提供者始终有责任确定医疗必要性并提交适当的代码、修饰符和所提供服务的费用。Axonics 对此处包含或未包含的信息不承担任何责任。
我很高兴贡献这篇简短的观点来纪念 Terri Grodzicker 担任《基因与发育》杂志编辑的 35 年,该杂志是基因调控和发育生物学领域最重要的杂志之一。在 Terri 任职期间,Levine 实验室在《基因与发育》杂志上发表了 30 篇论文,她对这些论文的慷慨管理证明了她的耐心、幽默和学识广博。这些研究涵盖了果蝇早期胚胎的基因表达、转录后过程(例如替代性多聚腺苷酸化)以及基因调控网络在海鞘 Ciona intestinalis 蝌蚪不同细胞类型指定中的作用。我们衷心感谢 Terri 多年来为提高我们论文质量所做的努力。我们不能让 Terri 离开,除非我们最后一次打扰她。我们早期的论文大多侧重于发育过程中基因表达的空间控制(例如,Doyle 等人,1989 年;Small 等人,1991 年)。除了总结这些工作之外,我们还想分享一些关于发育生物学中一个持久挑战的想法;即基因活动的时间控制。我们简要总结了三种调节发育过程中转录时间的潜在基因组结构机制:基因长度、增强子接近度和束缚元件。
在路由、网络分析、调度和规划等应用领域,有向图被广泛用作形式模型和核心数据结构,用于开发高效的算法解决方案。在这些领域,图通常会随时间而演变:例如,连接链路可能由于临时技术问题而失败,这意味着图的边缘在一段时间内无法遍历,必须遵循替代路径。在经典计算中,图既通过邻接矩阵/列表显式实现,又以有序二元决策图符号化实现。此外,还开发了临时访问程序来处理动态演变的图。量子计算利用干扰和纠缠,为特定问题(例如数据库搜索和整数分解)提供了指数级加速。在量子框架中,一切都必须使用可逆运算符来表示和操作。当必须处理动态演变的有向图的遍历时,这带来了挑战。由于路径收敛,图遍历本质上不是可逆的。对于动态发展的图,路径的创建/销毁也会对可逆性产生影响。在本文中,我们提出了一种新颖的量子计算高级图表示,支持实际网络应用中典型的动态连接。我们的程序可以将任何多重图编码为一个酉矩阵。我们设计了在时间和空间方面最优的编码计算算法,并通过一些示例展示了该建议的有效性。我们描述了如何在恒定时间内对边/节点故障做出反应。此外,我们提出了两种利用这种编码执行量子随机游走的方法:有和没有投影仪。我们实现并测试了我们的编码,获得运行时间的理论界限并由经验结果证实,并提供有关算法在不同密度图上的行为的更多细节。
国防劳动力在威胁和复杂性方面不断发展的作战领域内运作。人才和支持劳动力管理实践必须不断发展,以应对我们的对手所带来的不断变化的形势,以满足未来的战略任务要求。该部门必须招募、培养和留住一支能够适应新兴技术和不断变化的威胁环境的高技能劳动力。此外,任务成功和准备就绪取决于拥有一支知识渊博、技能娴熟、能够灵活满足任务要求的劳动力。作为回应,该部门制定了国防部网络劳动力框架(在本文档中称为“框架”),以提供一种标准化的方式来描述军事、文职和承包商人员的具体工作,并支持人才管理活动以支持关键任务。
致讲师 本模块的唯一先决条件是线性代数课程。学生学习必要的背景知识后,它可以用于线性代数课程。事实上,这将是线性代数课程中的一个极好的项目。通常,在第一门线性代数课程中,学生会学习实数上的向量空间。对于此模块,他们需要研究二元域上的向量空间。因此,这将提供一定程度的抽象(但可管理)。此外,它可以用于任何适合或需要引入纠错码的计算科学课程。最后,可以使用此模块的另一门课程是抽象代数课程。一旦学生学习了一般的有限域,他们就可以在任意有限域上定义和实现汉明码(当然,首先学习二元域上的汉明码仍然会对他们有益)。通常,在学习抽象代数课程之前,学生熟悉素数p的整数模p域,但不熟悉更一般的有限域。本模块使用的软件是Maple版本10(经典工作表模式)。摘要 纠错码理论是数学在信息和通信系统中的一个相对较新的应用。该理论得到了广泛的应用,从深空通信到光盘的声音质量。事实证明,可以使用一套丰富的数学思想和工具来设计好的代码。该领域使用的数学工具集通常来自代数(线性和抽象代数)。本模块的目的是通过一类众所周知的代码(称为汉明码)向具有线性代数基础知识的学生介绍该主题的基础知识。介绍了与汉明码相关的有趣属性和项目。关键词:编码理论、纠错码、线性码、汉明码、完美码
用于材料建模的人工神经网络 (ANN) 引起了广泛关注。我们最近报告了一种基于玻尔兹曼机 (BM) 架构的 ANN 改编版,该改编版适用于多配置多电子波函数的拟定,称为神经网络量子态 (NQS),用于量子化学计算。本文,本研究将其扩展形式化为一种量子算法,该算法能够通过量子门准备 NQS。ANN 模型的描述符被选为电子配置的占用,以量子力学方式由量子位表示。因此,我们的算法可能比以前研究中使用的基于经典采样的计算具有潜在优势。NQS 可以通过量子原生程序准确形成,但模型在能量最小化方面的训练是在经典计算机上进行的;因此,我们的方法是一类变分量子特征求解器。 BM 模型与 Gibbs 分布相关,我们的准备程序利用了量子相位估计技术,但没有哈密顿演化。通过在量子计算机模拟器上实现该算法来评估该算法。显示了在完全活性空间配置相互作用理论水平上的说明性分子计算,证实了与我们之前的经典方法的准确性一致。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。