Sample SE T /dB SE R /dB SE A /dB SE A /SE R /% SSE t /(dB·(cm −2 ·g) −1 ) M3-MX-0 5.0 0.9 4.0 4.3 87.6 M3-MX-5 6.8 1.5 5.3 3.5 147.5 M3-MX-10 7.2 1.7 5.5 3.2 171.0 M3-MX-15 7.0 1.7 5.3 3.0一直m3-ag@mx-15 69.0 10.3 58.7 5.7 2 356.6 m3-ag@mx-20 68.2 10.3 57.8 5.6 2 719.8 m3-ag@mx-25 67.9 10.0 57.0 57.9 5.8 2 439.4 2 439.4
(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
图 1 有机光电突触器件 . (a) 人类视网膜和大脑系统示意图 ; (b) 储池计算结构 ; (c) 提拉法制备有机薄膜示意图 ; (d) C 8 -BTBT 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (e) PDIF-CN 2 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (f) C 8 -BTBT 薄膜的 AFM 图像 ( 标 尺 : 1.6 μm); (g) PDIF-CN 2 薄膜的 AFM 图像 ( 标尺 : 1.6 μm); (h) 具有非对称金属电极的有机光电突触晶体管器件结构 ; (i) 器件 配置为光感知型突触 ; (j) 器件配置为计算型晶体管 ( 网络版彩图 ) Figure 1 Organic optoelectronic synaptic devices. (a) The schematic diagram of human retina and brain system. (b) The architecture of a reservoir computing. (c) The preparation of organic thin films by dip coating method. (d) The optical microscope image of C 8 -BTBT film. Scale bar: 100 μm. (e) The optical microscope image of PDIF-CN 2 film. Scale bar: 100 μm. (f) The AFM image of C 8 -BTBT film. Scale bar: 1.6 μm. (g) The AFM image of PDIF-CN 2 film. Scale bar: 1.6 μm. (h) The schematic diagram of organic optoelectronic synaptic transistor with asymmetric metal electrodes. (i) The device is configured as a light-aware synapse. (j) The device is configured as a computational transistor (color online).
*注:关于服务可用性,99.9% 表示服务每年可能中断 8 小时,99.95% 表示服务每年可能中断 4 小时,99.99% 表示服务每年可能中断 1 小时。
同时,它将卷积神经网络与传统方法相结合,以基于短时傅立叶变换和连续小波变形的特征提取方法提出特征提取方法。卷积神经网络分类算法使用特征提取算法来提取时间频率特征来制作时间频率图,并使用卷积网络来快速学习分类的功能。测试结果表明,该算法在运动图像脑电图公共数据集中的精度为96%,而自制数据集的精度率约为92%,这证明了算法在运动成像EEG分类中的可行性。
收稿日期: 2024–05–13 ; 修回日期: 2024–06–28 ; 录用日期: 2024–07–05 ; 网络首发时间: 2024–07–19 15:22:18 网络首发地址: https://doi.org/10.13801/j.cnki.fhclxb.20240718.003 基金项目: 国家自然科学基金 (51902125) ; 吉林市科技发展计划资助项目 (20210103092) ; 第七批吉林省青年科技人才托举工程 (QT202316) National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin City (20210103092); Seventh Batch of Jilin Province Young Science and Technology Talents Promotion Project (QT202316) 通信作者: 陈杰 , 博士 , 副教授 , 硕士生导师 , 研究方向为碳纤维复合材料的开发与应用 E-mail: jiechendr@163.com
• Medicaid 和 Medicare • Anthem, Cigna, United, Rocky Mountain, Colorado Access • BHI, Anthem Behavioral, CU健康专属网络 • 提供自费和浮动比例
基因组学和疾病研究、高通量数据分析、网络生物学、计算遗传学、模型解释和可视 化、生物数据挖掘、比较基因组学、机器学习和医学影像分析、蛋白质结构与功能预测、 宏基因组学与微生物组、知识图谱构建、生物信息学工具开发、转录组学和表达谱的分析、 药物发现与设计、遗传流行病学、蛋白质组学、个性化医疗与精准医学、生物医学工程、 结构生物信息学、计算工具和软件开发、进化生物信息学、系统生物学、环境与生态计算 生物学和流行病学、计算生态学、序列分析、模式识别与生物信号处理、生物信息学与统 计分析、下一代测序技术、计算生物学与人工智能的融合、生物数据挖掘、处理与分析、 计算医学与临床应用、代谢组学、生物信息学工具与网络科学。
•随机森林•梯度提升•基于直方图的梯度提升•XGBOOST•袋装•逻辑回归•SGD分类器•K-Nearest邻居•多层感知器•TABPFN