易于拆卸和可重复使用的粘合剂作为一次性粘合剂的替代品具有吸引力,可减少浪费并促进再利用,回收或什至升级选项。木质素是纸 - 羽状产业的第二大聚合物和副产品,用于设计一种新颖的,高度可调的可逆聚合物粘合剂。采用的方法是利用P-羟基霉素酸在这项工作中使用木质素氧化化合物合成的P-羟基霉素酸结构的α,β-不饱和酯部分的光子响应特性,并使用木质素氧化化合物合成并修饰以可耐可可逆的粘附切换。可逆性是通过紫外线的暴露来实现的,紫外线裂解最初由酯的α,β-不饱和键形成的共价环丁烷环,从而使材料变软并易于分离。可以通过弹性链接以提供重新功能来再次建立原始聚合物结构。引入了实验方法(DOE)方法的设计,以优化重要变量,以实现粘合剂的最佳剪切强度。各种结构方面的效果显示了满足财产要求的结构的高可调节性。可再生资源的聚合物粘合剂的设计策略,以及本工作中描述的结构 - 属性分析机制,可以实施以设计基于生物的新型和可重复使用的粘合剂。
数字阴影(DS),它利用机器学习驱动的数据同化技术,例如非线性贝叶斯过滤和生成AI(Spantini,Baptista和Marzouk 2022; Gahlot,Orozco等人2024),为监视CO 2存储提供了更详细,更可靠的方法(Herrmann 2023; Gahlot等人。2023; Gahlot,Li等。2024; Gahlot,Orozco等。2024)。通过将不确定性(如渗透率)纳入储层特性,该框架提高了CO 2迁移预测的准确性,包括羽状压力和饱和度,从而降低了GCS项目的风险。但是,数据同化取决于有关储层特性的假设,将储层状态与地震特性联系起来的岩石物理模型以及初始条件。如果这些假设不准确,则预测可能会变得不可靠,进而将危害GCS操作的安全性。减轻这种风险的一种方法是增加用于训练负责数据同化过程的神经网络的预测合奏 - 将先前的预测样本映射到后部。在本演讲中,我们证明,通过合并各种岩石物理模型来增加预测集合,从而减轻了使用不准确模型的负面影响(例如,均匀与斑块饱和模型)。此外,我们发现在某些情况下,集成增强可以提高预测精度。
摘要 - 支队是表面衍生的流体和岩石之间相互作用的特权区域,可能导致矿石沉积。然而,脱离的流体动力和特定的表面衍生液体达到地壳深度的方式仍然神秘。当由合成的花岗岩埋入引起的加热会增加流体的浮力,从而阻碍了它们的下降时,这个问题更加令人困惑。在这里,执行了2D水热数值模型。几何形状包括悬挂墙中的脱离和次要正常断层。灵敏度测试,以评估地形梯度,合成岩浆活性以及脱离与地壳之间的深度依赖性渗透性对比的影响。几个流动指示器,随着时间的流逝集成并与粒子跟踪结合,使我们能够突出流体循环的主要控制。我们的研究表明,表面衍生的流体在脱离区域中的内化可以通过深度的热源(例如同步型pluton)的存在来增强。次要断层是表面衍生的流体的主要渗透路径,使脱离脱离。这些断层之间已经发现了羽状热异常。岩浆入侵的动态渗透率,取决于亚果的温度,在空间和时间上重现了南部Armorican Variscan域中铀矿化的概念模型,该模型被用作示例。
CO 2 -羽状地热 (CPG) 技术是一种地热发电系统,它使用地质储存的 CO 2 作为地下热提取流体来产生可再生能源。CPG 技术可以通过提供可调度电力来支持可变风能和太阳能技术,而灵活 CPG (CPG-F) 设施可以同时提供可调度电力、能量存储或两者。我们提出了第一项研究,研究 CPG 发电厂和 CPG-F 设施如何通过将工厂级发电厂模型与系统级优化模型相结合,作为可再生重度电力系统的一部分运行。我们以美国北达科他州为例,展示 CPG 将地热资源基础扩展到通常不考虑地热发电的地点的潜力。我们发现,太阳-风能-CPG 模型的最佳系统容量可以比峰值需求高出 20 倍。CPG-F 设施可以通过在季节性和短期时间范围内提供能量存储,将这种模拟系统容量降低到峰值需求的 2 倍多一点。 CPG-F 设施的运营灵活性进一步提高了 CPG 发电厂的环境空气温度限制,通过在临界温度下储存能量。在所有情况下,需要对二氧化碳排放征收每吨数百美元的税,才能在经济上证明使用可再生能源而不是天然气发电厂是合理的。我们的研究结果表明,CPG 和 CPG-F 技术可能在未来的可再生重电系统中发挥宝贵作用,我们提出了一些建议,以进一步研究其整合潜力。
CO 2羽状地热(CPG)能量系统循环地质存储的CO 2从自然渗透的沉积盆地中提取地热热。CPG系统比温度适中和渗透性的地质储层中的盐水系统比盐水系统产生更多的电力。在这里,我们在数值上模拟了沉积盆地的温度耗竭,并发现了相应的CPG发电变化。我们发现,对于给定的储层深度,温度,厚度,渗透性和井配置,最佳的井间距为储层寿命提供了最大的平均电力发电。如果井的间隔比最佳的距离更接近,则会产生较高的峰值电力,但是储层热耗尽较快。如果井的间隔大于最佳井,则伏耐热较长,但对流动的阻力更高,因此产生了较低的峰值电力。此外,比最佳的井相比,井的间距比最佳井比最佳井的间距要比最佳井的距离高10%。我们的模拟还表明,对于300 m厚的储层,707 m的井间距可在50年内提供一致的电力,而300 m的井间距会随着时间的推移而产生大量的热量和电力。最后,增加注射或生产井的管道不一定会增加平均电力发电。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:有条件的不稳定性和羽毛的浮力驱动潮湿对流,但在模型对流方案中具有多种代表性。垂直热力学结构信息来自大气辐射测量(ARM)位点和重新分析(ERA5),卫星来源的降水(TRMM3B42)以及与羽流浮力相关的诊断方法用于评估气候模型。以前的工作表明,CMIP6模型比其CMIP5对应物更准确地代表潮湿的对流过程。然而,对流发作的某些偏见在CMIP建模工作中仍然存在。我们诊断出每日产量的九个CMIP6模型的队列中诊断这些偏差,从而评估了等效温度,U e和饱和等效温度的条件不稳定性与羽毛模型相比,具有不同混合假设的羽状模型。大多数型号捕获了垂直结构的定性方面,包括与较低的自由对流层高度相当下降,并随着沉积空气的夹带而进行。我们定义了“伪进入”的诊断,该诊断结合了相结合的条件不稳定性,类似于小型建筑物近似值下的夹带会产生的条件不稳定性。这捕获了较大的衰减率(干空气的夹带)和小的饱和度(尽管夹带较高)之间的权衡。此伪进入诊断也是综合浮力开始降水的临界值的合理指标。模型(使用Tiedtke方案的变体的)模型或CAM5的夹带率较低,并且含量较低的模型(例如NASA-GISS)在此诊断中的观察范围内,均位于旁边。
图1网格和落后能源供应之间的电力系统相互作用(参考文献[1]中的图4)1图2原理和钒氧化还原流量电池的配置(Ref [19]中的图2 [19])8图3锂离子细胞的热失控状态和相关的缓解策略(图3al [29]) 10 Figure 4 Victoria Big Battery fire incident [47] 13 Figure 5 Classification of cyber threats for the BESS (Figure 2 of ref [65]) 18 Figure 6 High level list of global standards used for BESS 20 Figure 7 BESS guidance flowchart 32 Figure 8 CFD simulated heat plumes from a BESS showing thermal contours of air temperature (35°C calm wind conditions) 33 Figure 9 CFD simulated heat来自bess的羽状物显示了空气温度的热轮廓(20 km/h,带有贝斯长面对齐风条件)34图10为开发安全案例大纲的流程图(Ref [71]的图9)37图11 HazID研究的流程图41图12澳大利亚风度区域图12澳大利亚风区定义为AS AS 1170.2(图3.1(图3.1)(图3.1(a))。来源:AS 1170.2:2021。58图13 3 pm年风玫瑰图的比较。来源:BOM(2023)。从左上方顺时针方向:Gladstone(QLD),Nowra(NSW),珀斯(WA)和Latrobe Valley(VIC)59图14澳大利亚(TOP)和United的年平均温度图(底部)。nb。50°F = 10°C,60°F16°C,70°F21°C。61图15澳大利亚的年平均每日太阳辐射图62