翼梁,肋骨和字符串也是由支柱支撑的版本。的差异在于一个事实,即通过张力吸收一部分载荷(如果存在高翼的配置,如图2所示)或压缩(如果是低翼构造)。这意味着机翼的结构可以更轻,甚至可能在相同数量的质量方面更大[1]。这意味着在结构上更轻,更长,更薄的翅膀具有较高的细长度,从而提高了空气动力学效率或L/D比。此外,提高的效率将意味着飞机还需要减少燃料,从而减轻重量。,尽管这种配置也有一些缺点,因为支撑杆本身也增加了飞机的质量,并增加了飞机湿润的表面,从而增加了其寄生虫的阻力。也必须注意干扰和添加的结构复杂性,并且这种配置可能导致的空气弹性问题[2]。对于短途飞机来说,这种设计特别有趣,其中更具空气动力的机翼可以提供更高的攀爬速度和更滑的CD(连续下降)。
摘要NASA Ingenuity直升机的成功承诺,未来对火星的探索将包括与流浪者和着陆器一致的Aerobots。但是,由于其小而基本的设计,Ingenuity缺乏远程耐力和科学有效载荷能力。在一系列优化的火星无人机概念开发中,我们在本文中介绍了基于旋转EVTOL设计配置的初始尺寸,基于对悬停和垂直攀爬的执行参数分析,使用简化的Rotorcraft Momentum理论,用于一组更具挑战性的Martian Aerobot Mission,并符合最大的SpaceCraft Airoshell Limit lim Limit spacececraft Airsherlaft Airoshell Limit limimimep。发现串联转子构型是最有效的配置,而传统的单个主转子配置具有小直径,表现出最差的性能。
摘要:为研究上下旋翼干扰效应以及进给比、轴倾斜角和升力偏移对缩比同轴刚性旋翼系统气动性能的影响,对缩比同轴刚性旋翼系统在悬停和稳定前飞过程中的气动性能进行了实验研究。旋翼系统采用直径2 m、四叶片上下无铰链旋翼,安装在同轴旋翼试验台上。实验在中国空气动力研究与发展中心(CARDC)的φ3.2 m风洞中进行。旋翼系统在0°~13°的总距范围内进行了悬停测试,并在进给比高达0.6的情况下进行了前飞测试,重点关注了轴倾斜角和升力偏移扫掠。为了使共轴旋翼的运行方式与实际飞行方式相似,悬停飞行时将扭矩差调整为零,前飞时保持恒定升力系数。在同轴旋翼中以相同的螺距角设置进行了孤立单旋翼配置试验。悬停试验结果表明,下旋翼的品质因数 (FM) 值低于上旋翼,且均低于孤立单旋翼。此外,在相同的叶片载荷系数 (C T / σ) 下,同轴旋翼配置可以获得更好的悬停效率。前飞时,有效升阻比 (L/De) 为
本文旨在介绍在清洁航空翼项目中完成的LH 2功率支撑式干翼配置(SBDW),以进行小型中等范围任务(239 PAX,2500 nm)。在此框架中,Onera,Delft技术大学和Stuttgart大学正在建立一个常见的多学科设计过程,以探索这种配置提供的设计空间,在该配置中,机翼不再具有携带燃料的功能,因为低温LH 2 -Tanks位于熔融的后部。本文首先介绍了多学科和多保真设计过程,并详细描述了所有学科模块及其在快速OAD OAD OAD ONERA总体飞机设计(OAD)过程中的集成。第二部分重点是对结果的分析,深入研究了最佳概念的性能。
摘要 具有过渡飞行能力的微型飞行器,或简称为混合微型飞行器,结合了固定翼配置在续航能力方面的有益特性以及旋翼机的垂直起降能力,可在典型任务中执行五个不同的飞行阶段,例如垂直起飞、过渡飞行、前飞、悬停和垂直着陆。这种有前途的微型飞行器类别比传统微型飞行器具有更宽的飞行包线,这对控制界和空气动力学设计师都意味着新的挑战。混合微型飞行器的主要挑战之一是过渡飞行阶段气动力和力矩的快速变化,很难准确建模。为了克服这个问题,我们提出了一种飞行控制架构,它使用智能反馈控制器实时估计和抵消这些快速动态。所提出的飞行控制器旨在稳定混合微型飞行器的姿态以及它在所有飞行阶段的速度和位置。通过使用无模型控制算法,所提出的飞行控制架构无需精确的混合微型飞行器模型,因为该模型成本高昂且耗时。介绍了一套全面的飞行模拟,涵盖了尾座微型飞行器的整个飞行包线。最后,进行了真实飞行测试以比较模型
1 简介 1 1.1 背景:微型飞行器 ....................1 1.2 需要更高效的悬停微型飞行器 ............3 1.3 带罩旋翼配置:性能提升潜力 10 1.4 管道螺旋桨和带罩旋翼的先前研究 ......26 1.4.1 历史概述 .......................26 1.4.2 实验工作:罩壳设计变化的影响 ...32 1.4.2.1 早期工作 ...................42 1.4.2.2 直升机尾桨 ................58 1.4.2.3 无人机 .................68 1.4.3 实验工作:单个带罩转子模型的测试 ..86 1.4.4 性能预测的分析方法 .........87 1.4.4.1 叶片元和势流方法 ......88 1.4.4.2 计算流体动力学方法 .......93 1.4.5 其他带罩旋翼研究 ................96 1.4.5.1 噪声考虑 ...................96 1.4.5.2 翼尖间隙流动物理 ...................100 1.4.5.3 笼罩旋翼无人机稳定性和控制 .......101 1.4.5.4 环形翼的行为 ...............103 1.5 低雷诺数转子空气动力学 .................103 1.6 当前研究的目标和方法 ............。104
飞机设计阶段(概念阶段和初步阶段)本质上必然是协作的。本文进行的一个示例设计使两个学术小组(一个在那不勒斯,一个在斯德哥尔摩)使用他们自己的工具 ADAS 和 CEASIOM 分别进行概念设计和初步设计,从而实现了设计的协作方面。ADAS 工具主要基于经验的设计方法,而 CEA-SIOM 工具主要基于物理的设计方法。所选示例是符合 FAR-23 标准的 16 座双涡轮螺旋桨飞机。ADAS 概念设计产生的高翼配置被选为 CEASIOM,在其中构建了几何的防水模型,生成了体积网格,并通过欧拉方程的解模拟了 16 种飞行条件,一些飞行条件为螺旋桨关闭,另一些飞行条件为螺旋桨开启,以判断螺旋桨洗对主翼和水平尾翼表面的影响。对 ADAS 结果和 CEASIOM 结果的稳定性和控制特性进行了详细比较。总体而言,这两组结果具有合理的一致性,因为 ADAS 中的经验主义考虑了粘性效应,而 CEASIOM 纯粹是无粘性的(但非线性)。最大的差异出现在水平尾翼的俯仰力矩贡献中,对此提出了各种解释,包括主翼下洗和尾流对