摘要:土壤盐分抑制作物发芽和幼苗生长,导致作物立地不均、生长不均匀、产量低下。本研究旨在评估接种从盐渍土中分离的植物生长促进细菌 (PGPB) 菌株 (E1 和 T7) 的十字花科种子的早期耐盐性。在对照和盐度条件下培养未接种和接种的 Lobularia maritima、Sinapis alba 和 Brassica napus 种子,首先在琼脂平板中评估每种盐的发芽抑制浓度,然后在用含有 0 或 75 mM NaCl 的水灌溉的土壤中培养。我们的结果表明,T7 是唯一能够在盐渍条件下增加 L. maritima 发芽的菌株。然而,接种 T7 的 L. maritima 和 S. alba 植物以及接种 E1 的 B. napus 植物的茎生物量、根长和分枝数均有所增加。同时,这些幼苗表现出较少的氧化损伤和更强的平衡植物活性氧生成的能力。这项研究表明,用耐盐 PGPB 菌株接种种子是一种适合在早期阶段改善盐度负面影响的策略。尽管如此,观察到的特定植物-宿主相互作用凸显了针对特定不利环境条件建立定制的 PGPB-作物关联的必要性。
1 Sivas科学技术大学农业科学和技术教职员工,Sivas,Türkiye,Türkiye,2田间作物系,农业学院,Çukurova大学,ÇukurovaUniversity,Adana,Türkiye,Türkiye,东部3号东部的Meditererranean农业研究所研究所,国际贸易研究所,国际工艺研究所 Tropics, Hyderabad, Telangana, India, 5 Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa, 6 DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa, 7 Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea, 8 Advanced Engineering School (Agrobiotek), Tomsk State大学,俄罗斯汤姆斯克大学,9kır的ehir ahi evran Universitesi ziraat fakultesi tarla tarla bitkileri bolumu,kır的埃希尔,türkiye,10次摩托大学园艺研究所,jeju national University,Jeju National University,Jeju National University,Jeju jeju,jeju,jeju
1 Sidney Kimmel医学院微生物和免疫学系,托马斯·杰斐逊大学,费城,宾夕法尼亚州费城,19107年,美国2分子寄生虫学实验室,林赛·金博尔研究所,纽约血液中心,纽约血液中心,纽约,纽约,10065帕克,阿德莱德公园,澳大利亚5042,澳大利亚5 Alpha Genesis Inc.,Yemassee,SC 29945,美国6 IDEXX BIOANALYTICS,西萨克拉曼多,CA 95605,美国7,美国7分司,药理学和实验治疗系,Sidney Kimmel医学院美国97030,贝勒医学院国家热带医学院儿科开发中心,美国9号,美国9号感染研究所,兽医与生态科学研究所,利物浦利物浦L3 5rf,英国利物浦大学 *通信 *通信); David.abraham@jefferson.edu(D.A。)†这些作者为这项工作做出了同样的贡献。
1960 年代,耐甲氧西林金黄色葡萄球菌(MRSA)开始出现,并有报道呈波浪式出现(Strausbaugh et al ., 1996)。国家医院感染监测系统的数据报告,重症监护病房中耐甲氧西林金黄色葡萄球菌菌株数量急剧增加,达到 59.5%-64.4%(Klevens et al., 2006)。目前已知的葡萄球菌的药物靶点包括肽聚糖生物合成途径的青霉素结合蛋白。以前,β-内酰胺类抗生素对葡萄球菌非常有效。此外,由于改良型青霉素结合蛋白的生物合成和β-内酰胺酶的生物合成,这些药物现在不再有效 (Kong et al .,2010)。全世界都在关注研究一种以前未曾研究过的抗生素的可能性。
Carla Rodrigues 1,2,*,ValérieBouchez1,2,*,AnaïsSoares³,Sabine Trombert-Paolantoni⁴,Fatimaaïtelbelghiti⁵,jérémieMief cohen 6.7 Toubiana组1,2,6,**,Sylvain Brisse 1,2,**1。巴黎大学的巴斯德学院,法国巴黎的细菌病原体生物多样性和流行病学2。国家百日咳和其他Bordetella感染的国家参考中心,法国巴黎的巴斯德研究院3.EUROFINS BIOMNIS实验室,法国里昂,4。实验室CERBA,圣奥恩·卢阿·阿莫恩,法国5。法国公共卫生,传染病部,法国公共卫生局,法国圣莫里斯6.普通儿科和小儿传染病系,巴黎塞列氏大学,内克·恩菲特斯·马拉德斯,法国APHP,巴黎,法国7。流行病学和统计研究中心(INSERM UMR 1153),法国巴黎大学巴黎大学Cité大学8。REMICQ研究小组的成员在合作者
尽管再灌注治疗和药物治疗策略已取得长足进步(1),但急性心肌梗死(AMI)仍然是冠心病患者死亡的主要原因之一,严重威胁患者的生命健康(2)。《2021年中国心血管健康与疾病报告》显示,我国心血管疾病发病率和死亡率仍呈上升趋势,心血管疾病死亡率居首位,高于肿瘤等疾病,其中AMI死亡率快速上升。随着再灌注治疗的发展,经皮冠状动脉介入治疗(PCI)已成为治疗AMI的重要方法,是降低AMI患者死亡率最有效的措施之一。人们普遍认为,运动能力下降是不良结局和损伤的重要预测因素,不仅在心血管疾病和慢性心力衰竭患者中如此,在普通人群中也是如此(3-5)。心肺运动试验 (CPET) 测量峰值氧耗 (VO 2 峰值),被广泛用作测量运动能力的金标准 (6,7)。此外,CPET 已成为临床评估 AMI 患者心脏康复的最重要和最有价值的非侵入性诊断测试,也广泛用于评估 PCI 的疗效。CPET 也是
耐链霉素(SM)的结核分枝杆菌( M . tuberculosis )是结核病(TB)治疗中关注的焦点,但其具体的耐药机制尚不清楚。本研究主要通过多基因组学的联合分析,对链霉素耐药相关基因进行初步筛选。通过全基因组甲基化、转录组和蛋白质组分析,阐明结核分枝杆菌H37Rv中特定基因与链霉素耐药性的关联。甲基化分析显示,SM耐药组与正常组之间有188个基因存在差异甲基化,其中89个基因为高甲基化,99个基因为低甲基化。功能分析显示,这188个差异甲基化基因富集在74条通路中,多数富集在代谢途径中。转录组分析显示耐药组与正常组之间有516个差异表达基因,其中显著上调和下调的基因分别有263和253个。KEGG分析表明这516个基因富集在79条通路上,大多数基因富集在组氨酸代谢途径,甲基化水平与mRNA丰度呈负相关。蛋白质组分析发现56个差异表达蛋白,其中14个上调,42个下调。此外,通过综合分析获得了3个枢纽基因(coaE、fadE5和mprA)。本研究结果提示,整合的DNA甲基化、转录组和蛋白质组分析可为SM耐药结核分枝杆菌H37Rv的表观遗传学研究提供重要资源。
1 印度海得拉巴校区比拉尼比拉理工学院生物科学系,海得拉巴 500078,印度;p20170002@hyderabad.bits-pilani.ac.in (GPS);sridev.mohapatra@hyderabad.bits-pilani.ac.in (SM) 2 印度科学与技术研究所东北科学技术研究所 (CSIR-NEIST) 生物科学与技术部,乔尔哈特 785006,印度;debajitbnc@gmail.com (DD);channakeshav@neist.res.in (CC) 3 印度水稻研究所 ICAR,海得拉巴 500030,印度;Satendra.KM@icar.gov.in (SKM);phosphdiester21@gmail.com (MS);rmsundaram34@gmail.com (RMS); cnneeraja@gmail.com (NNC); sakhare.akshaya@gmail.com (ASS) 4 国际半干旱热带作物研究所(ICRISAT)基因组学和系统生物学卓越中心,海得拉巴 502324,印度;manishroorkiwal@gmail.com 5 西澳大利亚大学农业研究所,珀斯,西澳大利亚州 6009,澳大利亚 6 州立农业生物技术中心,作物和食品创新中心,食品未来研究所,默多克大学,西澳大利亚州默多克 6150,澳大利亚* 通讯地址:ponnukota@gmail.com (SK); rajeev.varshney@murdoch.edu.au (RKV); gireesha@hyderabad.bits-pilani.ac.in (GM); 电话:+91-40-245-91268 (SK); +91-84-556-83305 (RKV);+91-40-66303697 (GM) † 同等贡献。
NETL 资助号 DE-FE002776 开发的技术已用于预测由于在役氧化导致 𝛾′ 结构演变而导致的蠕变。• 目前正在测试 • Haynes 224 的蠕变数据
驯化导致番茄耐盐性降低。为了确定造成这种缺陷的遗传成分,我们对由 369 个具有较大自然变异的番茄种质组成的群体进行了根系 Na + /K + 比的全基因组关联研究 (GWAS)。与根系 Na + /K + 比相关的最显著变异是在编码进化枝 IV HAK/KUP/KT 转运蛋白成员的基因 SlHAK 20 中确定的。我们进一步发现,SlHAK 20 运输 Na + 和 K + 并在盐胁迫条件下调节 Na + 和 K + 稳态。发现 SlHAK 20 编码序列的变异是与 Na + /K + 比相关的致病变异,并赋予番茄耐盐性。番茄 SlHAK 20 和水稻同源基因的敲除突变导致对盐胁迫的高度敏感性。总之,我们的研究揭示了一种以前未知的耐盐分子机制,该机制是造成栽培番茄品种耐盐性不足的原因。我们的研究结果为通过分子育种提高番茄和其他作物的耐盐性提供了重要信息。