镁合金具有生物相容性和可生物降解性,并能促进骨长入,使其成为未来治疗大面积骨缺损时替代自体和同种异体移植的理想候选材料。这些合金的粉末床熔合 - 激光束 (PBF-LB) 增材制造将进一步允许生产针对骨移植进行优化的复杂结构。然而,通过 PBF-LB 加工的结构的腐蚀率仍然太高。更好地了解 PBF-LB 期间产生的微观结构对腐蚀性能的影响被认为是其未来在植入物中应用的关键。在本研究中,研究了 PBF-LB 加工和随后的热等静压 (HIP) 对不同样品方向的微观结构和织构的影响,并将其与 Mg-Y-Nd-Zr 合金的腐蚀行为联系起来。将结果与挤压的 Mg-Y-Nd-Zr 合金进行了比较。与挤压材料相比,PBF-LB 加工材料的二次相数量越多,其局部腐蚀速率就越高。由于二次相的生长,HIP 之后的腐蚀速率进一步增加。此外,在 PBF-LB 材料中观察到了强烈的纹理,而在 HIP 材料中这种纹理也得到了增强。虽然这会影响通过动电位极化测试测得的电化学活性,但在长期质量变化和氢释放测试中,任何纹理效应似乎都被二次相的贡献所掩盖。未来的工作应该进一步研究各个工艺参数对材料微观结构和由此产生的腐蚀行为的影响,以进一步阐明其相互依赖性。
燃气轮机部分组件由镍或钴的超合金制成。这些超级合金以其高温强度,氧化和耐腐蚀性而闻名。超合金广泛用于燃气轮机发动机的高温环境。不幸的是,高温强度所需的合金组合物与氧化和腐蚀保护相反。为了获得最佳的整体性能,高强度超合金可以用腐蚀和耐氧化的mcraly涂层。mcraly's是一个具有钴,镍或铁的碱金属(M)的超级合金家族,并结合铬,铝和Yttrium(图1)。
3D打印,又称增材制造(AM),自1987年以来得到了迅速发展。与传统制造方法相比,3D打印具有提高材料利用率、减少材料浪费等优势。马氏体时效钢具有良好的强度和韧性,且不损失延展性,已用于3D打印技术。选择性激光熔化(SLM)是3D打印方法之一,主要用于金属和合金粉末。本文将选择性激光熔化用于马氏体时效钢。3D打印马氏体时效钢是一种新材料,关于3D打印马氏体时效钢性能的研究仍在进行中。由于腐蚀成本高,耐腐蚀性是马氏体时效钢最重要的性能之一。因此,本论文将重点研究3D打印马氏体时效钢的腐蚀行为。本论文的目的是找到高耐腐蚀性的最佳热处理条件,并找到马氏体时效钢微观结构与腐蚀行为之间的关系。本文使用了几种具有不同热处理条件的马氏体时效钢样品。 SLM、SLM奥氏体化&淬火、SLM时效、常规奥氏体化&淬火、常规时效。此外,还制备了两种溶液,NaOH(pH=11.5)和Na2SO4(pH=6.5)。使用光学显微镜观察微观结构。SLM和常规样品的晶粒尺寸不同,不同热处理条件的样品的晶粒尺寸也不同。使用动电位极化法测量腐蚀行为。与常规样品相比,SLM样品的电流密度低得多,钝化电位和腐蚀速率相似。但由于缺乏进一步的实验,腐蚀行为之间的关系可能受到多种因素的综合影响。
由于合金的成分空间几乎是无限的,因此设计耐腐蚀高熵合金 (CR-HEA) 具有挑战性。为此,需要高效可靠的高通量探索性方法。为此,当前的工作报告了一种基于第一性原理的方法,利用功函数、表面能和耐腐蚀性之间的相关性(即,根据定义,功函数和表面能分别与合金固有的耐腐蚀性成正比和反比)。使用由密度泛函理论 (DFT) 计算得出的离散表面能和功函数,评估了 fcc Co-Cr-Fe-Mn-Mo-Ni 功函数和表面能的两个贝叶斯 CALPHAD 模型(或数据库)。然后使用这些模型对不同的 Co-Cr-Fe-Mn-Mo-Ni 合金成分进行排序。观察发现,排序后的合金具有与之前研究的耐腐蚀合金相似的化学特性,这表明所提出的方法可用于可靠地筛选具有潜在良好固有耐腐蚀性的 HEA。
摘要:丝网印刷等高通量生产方法可以将可拉伸电子产品从实验室带入市场。由于其良好的性价比,大多数用于丝网印刷的可拉伸导体油墨都是基于银纳米颗粒或薄片的,但银容易失去光泽和腐蚀,从而限制了此类导体的稳定性。在这里,我们报告了一种经济高效且可扩展的方法来解决这个问题,即开发基于银薄片的丝网印刷油墨,银薄片上涂有一层薄薄的金。印刷的可拉伸 AgAu 导体的电导率达到 8500 S cm − 1,在高达 250% 的应变下仍保持导电性,表现出优异的腐蚀和失去光泽稳定性,并用于演示可穿戴 LED 和 NFC 电路。所报告的方法对智能服装很有吸引力,因为这种设备在各种环境中都有望长期发挥作用。关键词:可拉伸电子产品、软电子产品、印刷电子产品、金、银薄片、腐蚀、稳定性、NFC ■ 介绍
摘要:激光粉末床熔合(LPBF)是一种很有前途的金属材料增材制造工艺,其优点是产品设计灵活,可制造各种机械零件。然而,由于金属零件是逐层堆叠的,因此 LPBF 制备的材料具有各向异性的微观结构,这对于材料设计非常重要。本研究从构建方向探究了 LPBF 制备的 18Ni300 马氏体时效钢(MS)的耐腐蚀性能,并研究了热处理和时效对微观结构和耐腐蚀性能的影响。LPBF 中快速冷却形成的亚晶胞提高了 MS 的耐腐蚀性能。因此,构建后的 MS 具有最高的耐腐蚀性能。然而,热处理或时效会消除亚晶胞,导致耐腐蚀性能下降。对于 18Ni300 MS,圆柱形亚晶胞形成并沿着散热方向排列,与建造方向相似;因此,在建造状态的 MS 中发现明显的耐腐蚀各向异性。然而,这种耐腐蚀各向异性会因热处理和时效而减弱,从而消除亚晶胞。
1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。
摘要:激光定向能量沉积(LDED)过程中,快速熔化和凝固通常会导致孔隙和粗大柱状枝晶的出现,从而降低沉积合金的性能。本研究引入原位超声轧制(UR)作为增强LDED试件耐腐蚀性能的创新方法,深入研究了组织特征及其与耐腐蚀性能的关系。研究结果表明,LDED-UR试件的孔隙率和尺寸均有所减少。在LDED-UR工艺产生的剧烈塑性变形的影响下,出现了完全等轴晶粒,其平均尺寸减小至28.61 μm(而柱状晶粒的LDED试件为63.98 μm)。与LDED试件相比,LDED-UR试件的耐电化学腐蚀性能明显提高。这种耐腐蚀性能的提高可以归因于小孔隙率低、富铬铁素体相细小且分布均匀,以及由于晶粒边界致密而形成了致密厚的钝化膜。微观结构与腐蚀行为之间相关性的洞察为提高 LDED 样品的耐腐蚀性能开辟了一条新途径。