摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。
Mg 合金的粉末床熔合 - 激光束 (PBF-LB) 为生产具有优化设计的复杂结构提供了新的可能性,既可用于减轻航空航天应用中的重量,也可用于骨科应用中针对特定患者的植入物。然而,尽管已经对该主题进行了大量研究,但各个 PBF-LB 工艺参数对 Mg 合金微观结构和由此产生的材料性能的影响仍然不明确。因此,本研究旨在研究激光功率对表面粗糙度、微观结构和由此产生的关键材料性能(即耐腐蚀性和机械性能)的影响。样品由气雾化的 Mg-4%Y-3%Nd-0.5%Zr(WE43)合金粉末通过 PBF-LB 制成,使用三种不同的激光功率:60 W、80 W 和 90 W。与预期相反,90 W 样品的降解率最高,而 60 W 样品的降解率最低,尽管后者的表面粗糙度最高且内部孔隙较大。相反,发现 90 W 样品的较高降解率源于近表面微观结构。较高的能量输入和随之而来的晶粒尺寸减小,导致第二相沉淀物的数量比 60 W 样品增加,从而增加了通过微电偶腐蚀发生点蚀的趋势。对于拉伸强度和断裂伸长率,观察到了相反的趋势。在这里,发现 90 W 样品的晶粒尺寸减小和沉淀物增加是有益的。总之,观察到激光功率对微观结构的形成有一定影响,最终影响 WE43 的腐蚀和拉伸性能。未来的工作应该研究其他 PBF-LB 工艺参数的影响,以期在耐腐蚀和机械性能之间建立最佳平衡。
最大耐腐蚀性。最大热效率。最大热交换器寿命。CG Thermal 的 Umax® 高级陶瓷热交换器是镍合金、活性金属、石墨和石墨热交换器的高价值长寿命替代品,具有无与伦比的耐腐蚀性、热效率、低结垢和可维护性组合。卓越的耐腐蚀性 Umax® 陶瓷热交换器是您最具腐蚀性的传热应用的终极解决方案。它对高达 400 F 的几乎所有化学物质都具有普遍的耐腐蚀性。它们特别适合涉及混合酸、HF、HCL、高浓度 H2SO4、溴、氟或苛性碱的工艺。Umax 陶瓷非常坚硬,不受热冲击影响,具有出色的强度特性、防腐蚀且无污染。耐热冲击和抗机械冲击。Umax® 的抗压强度和抗弯强度分别是石墨的 50 倍和 10 倍。其抗弯强度甚至高于钽。其热性能同样出色,热导率是钽的 2 倍,且热膨胀率较低。
这项研究对海洋环境中金属产品的耐腐蚀性进行了深入的分析,并特别研究了12S-1型抗腐蚀涂层在保护海洋环境中金属中的有效性。在海洋条件下进行了深入讨论不同金属材料的耐腐蚀行为,并通过电化学腐蚀理论确定了随后的仿真实验的理论基础。本文着重于在不同金属材料和涂层或未涂层的12S-1抗腐蚀性涂层的条件下离合器气弹道的腐蚀性能,并使用盐喷雾测试来评估和比较各种处理的腐蚀保护有效性。结果证明,17-4PH材料在没有涂层的情况下仍表现出极好的耐腐蚀性,并且在一定程度上,12S-1抗腐蚀涂层的应用可以增强金属的耐腐蚀性。这项研究不仅为海洋环境中的金属抗腐蚀技术提供了坚实的理论和经验基础,而且还为船舶材料的抗腐败策略优化了重要的指导,并为相关行业的发展提供了实用的参考和方向。关键字:金属产品的耐腐蚀性,盐喷雾测试,12S-1抗腐蚀涂层,17-4 pH材料。1。简介版权所有©2025作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用无限制的使用,分发和再现,以提供原始作者和原始作者提供信用。
如今,化学工业的产品随处可见,并用于许多不同的环境中。这些环境对所使用的控制阀都有特殊要求,从塑化过程中产生的剧毒中间产品的可靠外密封,到涉及氯化学工艺的耐腐蚀性,再到制药和食品工业中的绝对无菌性。ARCA 提供满足最严格空气质量要求的波纹管密封件以及大量耐腐蚀性强的材料。例如,为食品工业开发的 BIOVENT ® 控制阀有多种设计和连接布局,并配有不锈钢驱动器和定位器,可满足所有应用需求。
摘要 - 我们使用碳钢浴(MS)底物上的硫酸盐浴对锌 - 尼克利合金的电沉积。使用船体细胞实验来优化浴室组成和工作条件。硫酸(SA)用作涂料的添加剂。浴室表现出异常的共沉积,更多的锌被沉积在贵族镍上。研究了涂层中温度和电流密度对涂层厚度,硬度,耐腐蚀性和重量%的影响。使用降低的动力学极化和电化学阻抗光谱方法研究了涂层锌 - 奈克合金膜(wt。%3.5)溶液中涂层的腐蚀行为。通过比色法确定涂料中的镍含量,并通过能量色散X射线光谱(EDX)技术进行验证。原子力显微镜(AFM)和扫描电子显微镜(SEM)技术用于确定涂层的表面粗糙度和表面地形。结果表明,在最佳电流密度(3A dm -2)下,锌 - 尼克涂层具有最高的耐腐蚀性(0.213 mm y -1)。因此,由于它们的优势耐腐蚀性,Zn-Ni涂层已被主要用于保护许多行业中的碳钢组件,包括汽车,军事和航空航天部门。
• 关键材料选择标准包括比刚度、比强度、耐腐蚀性、抗断裂和疲劳性、4 K ≤ T ≤ 675 K 温度范围内的热膨胀系数和热导率,以及易于制造。