摘要目的本研究研究了由后单面耳聋(SSD)引起的神经塑性变化,以及对耳朵耳朵的耳蜗植入的影响。使用正电子发射断层扫描(PET)/CT扫描仪植入前后,研究了从正常听力耳朵到大脑的声学信号的神经处理。方法在一项前瞻性临床试验中,八名患有语言后SSD的患者接受了人工耳蜗(CI)。动态想象,以将含有语音类元素的登录型的听觉任务的区域性大脑血流(RCBF)进行定位,而无需含义任何含义。在植入前和使用人工耳蜗植入至少8个月后,刺激了正常的听力耳朵(平均13.5,范围8.1-26.6)。八个年龄和性别匹配的受试者双方都有正常的听力为健康对照受试者(HCS)。在CI植入前刺激SSD患者的正常听力耳朵时,[15O] H2O-PET与HCS相比,两个半球的听觉区域显示出更对称的RCBF。使用CI增加了八名患者中的六名不对称指数(AI),表明对侧半球的活性增加。非参数统计数据显示,CI植入和HCS之前的患者之间的AI存在显着差异(P <.01),后CI植入后消失了(P = .195)。试验注册临床标识符:NCT01749592,2012年12月13日。结论功能性神经影像学数据表明,CI植入后神经元活性正常化的趋势,这支持CI在SSD患者中的有效性。
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们在作为听觉研究的既定动物模型的物种中采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗,X射线相位对比断层扫描,光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们在作为听觉研究的既定动物模型的物种中采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗,X射线相位对比断层扫描,光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
– 双侧极重度神经性听力损失 – 放大/助听器带来的益处有限。 ▪ 执行者: – 耳鼻喉专科医生 (ENT)。 ▪ 临床环境: – 医院、特殊耳鼻喉外科中心 ▪ 使用条件: – BOLD 人工耳蜗系统旨在恢复 12 个月及以上人群的听觉。 ▪ 排除标准: – BOLD CI 系统禁用于患有以下疾病的人群:耳聋。 – 中耳感染。 – 耳蜗骨化阻碍电极插入。 – 耳蜗缺失。
并非所有听力损失的患者都是人工耳蜗的候选者。人工耳蜗是一种外科手术,并带有典型的手术风险。有关适应症,警告和不良影响的完整信息,请参阅www.cochlear.com/us/nucleusindications
目标:这项研究的目的是提高我们对插入侧壁耳蜗电极阵列涉及的机械的理解。设计:三名经验丰富的外科医生进行了一系列30个插入实验。根据已建立的软手术指南,在先前验证的人工颞骨模型中进行了实验。使用体外设置使我们能够全面评估相关参数,例如插入力,当经压力内压力和精确的电极阵列在受控且可重复的环境中。结果:我们的发现表明,在插入的后半部分中,强烈的后偏压瞬变更频繁,并且重新填充电极阵列是这种现象中的一个明显因素。对于选择最佳插入速度,我们表明,平衡缓慢运动以限制速度限制持续时间的缓慢运动至关重要,以限制震颤引起的压力尖峰,这挑战了一个普遍的假设
人工耳蜗 一种电子假体装置,可帮助神经性听力损失患者识别声音。它由麦克风和语音处理器组成,可将声波转换为电信号,然后传输到耳蜗中植入的电极中。