在过去的十年中已经进行了,以理解和利用等离子纳米颗粒的非线性响应。12,54,56,74尽管进步稳定,但许多挑战仍然提出一个问题,即非线性等离子材料是否可以与传统的非线性材料相媲美。在这里,我们回顾了非线性等离子体超材料的当前状态,并试图解决上述问题。特别是,我们将治疗集中在接近光学和近红外频率附近的质量跨空面上。单个颗粒和传播表面等离子体也被排除在范围之外,因为它们已经在参考文献中覆盖了。41。此外,在该主题上已经存在一些评论,其重点是物质方面,制造,量子效应和异国情调的非线性现象。12,42,49,54,56,71,74因此,在这里,我们排除了这些考虑因素,而是专注于讨论非线性光学,模拟方面和SHG发射元信息的原理。我们重点介绍了与以前的方法相关的问题,并讨论了如何通过使用晶格和粒子间影响来缓解这些问题,例如表面晶格共振(SLR)。51
Gabanintha Vanadium项目是一项提议,旨在通过开放坑开采开发多个钒矿床(北部和中部),其生产和加工速率在23年内每年高达400万吨矿石(MTPA)。该提案位于西澳大利亚州中部地区的Meekatharra 40公里(公里)。该提案的支持者是澳大利亚技术金属有限公司。该提案包括开发矿坑和相关的基础设施,包括废岩地面(WRL),矿化废物库存,加工厂,我的运行,综合废物地图(结合尾矿存储设施),钙化存储区域,矿山脱水厂,脱水设施,工厂,车间,综合场,综合建筑和关联的基础设施和关联的建筑物。提出了两种采矿场景;方案1(分别挖掘北部和中央沉积物)和方案2(在扩展的坑中一起挖掘北部和中央沉积物)。
摘要 目的。本综述全面概述了耳脑电图 (EEG) 技术,该技术涉及记录放置在耳朵内或耳朵周围的电极的 EEG 信号,以及它在神经工程领域的应用。方法。我们使用多个数据库进行了彻底的文献检索,以确定与耳脑电图技术及其各种应用相关的研究。我们选择了 123 篇出版物并综合了信息以突出该领域的主要发现和趋势。主要结果。我们的综述强调了耳脑电图技术作为可穿戴脑电图技术未来的潜力。我们讨论了耳脑电图与传统头皮脑电图相比的优势和局限性以及克服这些局限性的方法。通过我们的综述,我们发现耳脑电图是一种很有前途的方法,其产生的结果与传统的基于头皮的方法相当。我们回顾了耳脑电图传感设备的发展,包括设计、传感器类型和材料。我们还回顾了耳脑电图在不同应用领域(如脑机接口和临床监测)的研究现状。意义。这篇评论文章是第一篇专注于回顾耳部脑电图研究文章的论文。因此,它为从事神经工程领域的研究人员、临床医生和工程师提供了宝贵的资源。我们的评论揭示了耳部脑电图令人兴奋的未来前景,以及它推动神经工程研究和成为可穿戴脑电图技术未来的潜力。
1.Guthrie, G.J.:眼科手术讲座,伦敦,Burgess & Hill,1823 年。2.1820 年至 1905 年纽约眼科(后来是耳科)医院的早期会议记录和报告。3.Dunshee, K.H.:《当你经过时》,纽约,黑斯廷斯出版社,1952 年,第 58、91、209 页。4.Hone,P.:《日记,1828-1851》,由 Allan Nevins 编辑,纽约,Dodd,Mead & Co.,1927 年,卷。1 和
1.Guthrie, G.J.:眼科手术讲座,伦敦,Burgess & Hill,1823 年。2.1820 年至 1905 年纽约眼科(后来是耳科)医院的早期会议记录和报告。3.Dunshee, K.H.:《当你经过时》,纽约,黑斯廷斯出版社,1952 年,第 58、91、209 页。4.Hone,P.:《日记,1828-1851》,由 Allan Nevins 编辑,纽约,Dodd,Mead & Co.,1927 年,卷。1 和
摘要 — 过去几年,人们已经证明可以从耳内记录脑电图 (EEG)(入耳式 EEG)。为了打开小型耳机作为可穿戴脑机接口 (BCI) 的大门,本研究介绍了一种实用的入耳式 EEG 设备,该设备基于多个干电极、用户通用设计和用于流式传输数据和设备编程的轻量级无线接口。该耳机旨在改善广大用户的耳道接触,并采用基于真空成型、等离子处理和喷涂等标准技术的低成本可扩展制造工艺制造。2.5 × 2.5 cm 2 无线记录模块旨在记录数据并以无线方式传输到主机。在三个月内对三名人类受试者进行了性能评估,并与临床级湿头皮 EEG 记录进行了比较。介绍了自发和诱发生理信号、眨眼、α 节律和听觉稳态响应 (ASSR) 的记录。据我们所知,这是第一款采用干式多电极、用户通用设计的无线入耳式脑电图。用户通用耳部脑电图记录的平均 alpha 调制为 2.17,优于最先进的干式电极入耳式脑电图系统。
精确肿瘤学的治疗领域(例如精确分子肿瘤学,靶向放射疗法,下一代免疫肿瘤学,ADC),精度心脏疾病(例如心力衰竭,心肌病,肥厚性心肌病,慢性肾脏疾病,常染色体显性肾脏疾病,狼疮性肾炎),通过细胞和基因治疗以及免疫学和炎症启用的神经病学和稀有疾病(例如SLE,IBD)。SLE,IBD)。
氨基糖苷通常用于治疗威胁生命的细菌感染,但是,通过长期的临床治疗,氨基糖苷可能会导致不可逆的听力损失。尽管广泛探讨了大量研究,但氨基糖苷的耳毒性的机制和预防仍受到限制。特别是,程序性细胞死亡(PCD)的进步提供了更多的新观点。本综述总结了程序性细胞死亡中的一般信号途径,包括细胞凋亡,自噬和铁凋亡,以及氨基糖苷诱导的耳毒性的机制。此外,还研究了新的干预措施,尤其是基因治疗策略,以预防或治疗前瞻性临床应用,以预防或治疗氨基糖苷诱导的听力损失。