将茶碱等救命药与靶向部分进行离子配对,可能会对哮喘持续状态或 COVID-19 引起的纵隔气肿等医疗紧急情况产生重大影响。然而,为了在体内实现快速药物靶向,必须防止离子对在进入靶组织之前分解。本研究旨在调查当茶碱与多胺转运蛋白底物精胺离子配对时,将其插入环糊精 (CD) 中形成三重体,是否可以在静脉注射后将支气管扩张剂选择性地引导至肺部。NMR 表明,三重体形成后,精胺从 CD 腔中突出,这会导致 A549 细胞中的能量依赖性摄取(增强 1.8 倍),持续时间超过 20 分钟。在体内,三联体在大鼠和小鼠体内注射 20 分钟后分别使肺中茶碱增加 2.4 倍和 2.2 倍(p < 0.05)。肺靶向性是选择性的,不会增加大脑或心脏的吸收量,而这些部位的茶碱副作用是治疗限制因素。选择性地将肺中茶碱的浓度加倍可以改善这种治疗指数较窄的药物的效益风险比,这在重症监护中仍然很重要。
二级结构。10,11 事实上,病毒基因组 RNA 的特定区域折叠成某些二级结构可能会阻碍病毒基因组的表达和复制,因为它们会阻碍病毒 RNA 转录和/或作为 RNA 加工机制附着的标志。这些结构包括 G-四链体 (G4),它是由单链富含鸟嘌呤的 DNA 或 RNA 序列自身折叠形成的四链结构。12 a,b G4 结构的特征是两个或多个平面排列的四个鸟嘌呤 (G-四联体) 堆叠,并通过 Hoogsteen 氢键和阳离子配位稳定。这些结构可能出现在具有至少四个连续的两个或更多个鸟嘌呤段的序列中,其间散布着形成所谓环的序列。 G4 在多种病毒(包括单链 RNA 病毒)中发挥着重要作用,13,14 一些靶向 G4 的化合物已显示出抗病毒活性,15 这表明 G4 特异性化合物是潜在的抗病毒药物。最近的报告在 SARS-CoV-2 基因组中发现了许多假定的 G4 形成序列,其中一些已被证明可以在体外形成 G4。11,16–18
摘要:编码的代数理论是现代代数应用领域之一。遗传矩阵和代数生物学是进一步理解遗传密码模式和规则的最新进展。遗传密码由DNA和RNA中的四种核苷酸(A、C、G、T)的组合编码而成。DNA决定了生物体的结构和功能,包含完整的遗传信息。DNA碱基对(A、C、G、T)构成双螺旋几何曲线,定义了64个标准遗传三联体,并进一步将64个遗传密码子退化为20种氨基酸。在三角学中,四个基本三角函数(sin x、tan x、cos x、cot x)为傅里叶分析对信号信息进行编码提供了基础。本文利用这4对三角函数基(sin x、tan x、cos x和cot x)生成了64个类似64个标准遗传密码的三角三元组,进一步研究了这64个三角函数,得到了20个类似20个氨基酸的三角三元组。这一相似性表明,通用遗传密码与三角函数的通用性之间存在相似性联系。这种联系可能为进一步揭示遗传密码的模式提供桥梁。这表明矩阵代数是生物信息学和代数生物学中一种有前途的工具和足够的语言。
遗传密码研究探索了生命的基本语言,旨在了解 DNA 如何协调蛋白质的合成。本研究探索了遗传密码的各个方面,从广泛使用的三联体密码子系统到转移 RNA (tRNA) 在翻译中的重要作用。本研究揭示了密码子和反密码子之间相互作用的复杂性以及核糖体的协调,阐明了蛋白质合成的起始、延长和终止阶段。此外,它还深入研究了影响翻译过程的调节因素和质量控制机制。在探索遗传密码的进化过程中,本研究仔细研究了它的普遍原则、例外情况以及围绕其起源的令人信服的猜想。tRNA 和密码子的共同进化,以及在不同生物体和细胞器中观察到的密码的适应性,提供了有价值的见解。值得注意的是,这项研究强调了基因工程、密码子优化和蛋白质设计等广泛的生物技术应用。这项研究不仅解决了遗传密码研究中的未知领域,还提出了未来的研究方向。它强调了该领域当前的挑战和机遇,包括密码扩展和基因编辑进步。最终,遗传密码研究仍然是一个充满活力、不断发展的领域,对科学、技术和我们对生命基本过程的理解具有深远的影响。这项研究揭示了遗传密码的迷人故事,揭示了继续吸引和启发人们的新领域和应用。
亨廷顿舞蹈症 (HD) 是一种严重的成人遗传性神经系统疾病,具有多种临床表现,包括抑郁、认知能力下降和舞蹈症(以前称为亨廷顿舞蹈症),始于 40 岁左右,到 65 岁时严重程度可能会加剧。据估计,全球每 100,000 人中就有 13-14 人患有这种疾病。亨廷顿舞蹈症主要影响大脑的区域是尾状核和壳核,它们是纹状体的组成部分。由于皮质锥体神经元和中棘神经元参与运动过程,因此在亨廷顿舞蹈症中更容易发生退化。亨廷顿舞蹈症的主要病因是亨廷顿基因 (Htt) 的突变,其特征是 Htt 外显子 1 中的 CAG(胞嘧啶、腺嘌呤、鸟嘌呤)三联体重复增加(Kumar 等人,2021 年)。由于该疾病的复杂性质,尚未找到长期解决方案;目前,治疗 HD 症状的唯一选择包括可逆性囊泡单胺转运体 2 型 (VMAT-2) 抑制剂丁苯那嗪和氘代丁苯那嗪,这两种药物已获得美国 FDA 批准 (Claassen 等人,2022 年)。
• 无义突变:它们在 DNA 序列的某个点(根据突变而变化)包含三个碱基(密码子),发出信号来中断 CFTR 蛋白的合成:它们也称为“停止”突变。由此产生的蛋白质被截断和去除•错义突变:导致 DNA 序列中碱基三联体交换的突变:这意味着在蛋白质链的某个点上,一个氨基酸被另一个氨基酸取代。这种替换不会去除蛋白质,但可以决定或多或少严重的功能改变,这取决于链的点和被替换的氨基酸的类型。在意大利,它们约占所有突变的 7%:最常见的(约 5%)是 N1303K。 • 移码突变:非常罕见(并且通常很难用当前技术识别),通过插入(添加)或删除(截断)大段 DNA 导致基因序列的重大改变,从而大大阻止 CFTR 蛋白的合成。在意大利,总体而言,它们所占比例不到 0.5%:例如 541delC 或 3667ins4(“del”或“ins”代表删除或插入)。 • 剪接突变:“剪接”是将基因的“编码”DNA 部分(称为“外显子”)中包含的遗传信息转移到信使 RNA 的机制,信使 RNA 负责控制蛋白质的合成。剪接机制受基因的“非编码”部分(称为“内含子”)的调控。与其他突变不同,剪接突变位于内含子中,而不是外显子中。这些突变会破坏代码的传输,通过或多或少地阻止正常 CFTR 蛋白的合成(具体取决于突变的类型):本质上,这些突变会导致一定比例的正常 CFTR 和一定比例的改变或缺失的 CFTR。患有这些突变的人的临床情况取决于在合成过程中保留了多少正常 CFTR
抗生素耐药性是公共卫生面临的一大挑战,过去的一年里这一问题愈演愈烈 [1, 2]。对于由细菌病原体金黄色葡萄球菌引起的感染尤其如此,这种感染是导致死亡的主要原因,通常与社区获得性耐药菌株 (MRSA) 有关 [3]。这就迫切需要找到新的解决方案,以便有效地诊断和治疗,克服耐药性,避免抗生素库的耗尽。需要金黄色葡萄球菌内的新蛋白质靶点来开发有效的诊断探针,既可用于成像应用,也可用于治疗策略,以阻断细菌的生产性感染,而不会迫使生物体选择耐药突变体。基于氟膦酸酯的活性探针在促进生物膜生长的条件下,鉴定出金黄色葡萄球菌中十种以前未鉴定的活性丝氨酸水解酶,这可以满足这一需求。这些酶被命名为氟膦酸酯结合水解酶 (Fphs),每个酶的字母顺序取决于其预测大小 (52 kD FphA – 22 kD FphJ) [4]。它们都是 α/β 水解酶超家族的成员,其特点是核心由八个 β 链组成,这些 β 链由几个 α 螺旋连接,活性位点为丝氨酸-组氨酸-天冬氨酸或谷氨酸三联体。亲核丝氨酸用于水解底物,小分子可以轻松且特异性地靶向 [5, 6]。一般来说,这些蛋白质在代谢物、肽和脂质的加工中起着重要作用,是控制细胞信号传导和代谢的一种手段;然而,到目前为止,所有 Fphs 的生物学功能仍然未知,只有 FphF 的结构被确定 [6, 7]。它们在生物膜形成条件下的活性状态使它们易于通过化学抑制剂进行修饰,从而开发成探针和药物。这种新化合物
三十多年来,农杆菌介导的转化技术一直用于树果作物的基因工程。尽管在草本植物和一年生植物的水平上利用这项技术仍然存在许多障碍,但该领域已经取得了很大进展(Song 等人,2019 年)。在本研究主题的第二卷中,有论文描述了不同研究小组正在采取的方法,以促进难处理的树种的遗传转化,并在更基本的层面上了解 T-DNA 插入宿主细胞基因组的机制。在一项优雅的研究中,Gelvin 等人研究了 T 环的形成作为理解 T-DNA 整合的代理。在这项工作中,从转基因植物本氏烟或拟南芥中形成的 T 环中详细描述了与 LB-RB 连接相关的区域。结果表明,T 环中的 RB-LB 连接类似于 T-DNA 和发生整合的植物 DNA 之间的连接。相似之处包括:与 RB 相比,LB 处的缺失频率更高且序列变化更为广泛;连接位点存在微同源性;存在来自农杆菌或植物基因组的填充 DNA;多个 T-DNA 拷贝的多联体组织,其中 RB-RB 和 LB-LB 连接比 RB-LB 连接更常见。此外,作者还表明,T 环的形成即使在农杆菌 VirD2 基因中没有 Ku80 和 w 突变的情况下也能进行,其影响与对 T-DNA 整合的影响相似。根据他们的数据,作者提出 T 环的形成可用于研究 T-DNA 整合到宿主基因组的所有方面。大多数关于柑橘转化的已发表研究都仅使用了少数相对容易转化的品种的材料(Song 等人,2021 年)。 TAMU 的 Mandadi 团队(Dominguez 等人)开发了一种方法,可以促进 14 种柑橘品种的转化。他们通过在转化方案中使用的培养基中添加亚精胺和硫辛酸等补充剂,并使用含有额外 VirG 和 VirE 基因拷贝的辅助质粒 pCH32 来实现这一点。
泛素化是一种重要的蛋白质翻译后修饰(PTM),在控制底物降解过程中起着至关重要的作用,进而介导各种蛋白质的“数量”和“质量”,确保细胞稳态并保证生命活动。泛素化的调控是多方面的,不仅在转录和翻译后水平(磷酸化、乙酰化、甲基化等)起作用,而且在蛋白质水平(激活剂或抑制剂)起作用。当调控机制异常时,改变的生物学过程可能随后诱发严重的人类疾病,特别是各种类型的癌症。在肿瘤发生中,改变的生物学过程涉及肿瘤代谢、免疫肿瘤微环境(TME)、癌症干细胞(CSC)干性等。在肿瘤代谢方面,一些关键蛋白如RagA、mTOR、PTEN、AKT、c-Myc和P53的泛素化显著调节mTORC1、AMPK和PTEN-AKT信号通路的活性。此外,TLR、RLR和STING依赖性信号通路的泛素化也调节TME。此外,核心干细胞调节三联体(Nanog、Oct4和Sox2)以及Wnt和Hippo-YAP信号通路成员的泛素化参与维持CSC的干性。基于改变的组分,包括蛋白酶体、E3连接酶、E1、E2和去泛素化酶(DUB),许多分子靶向药物已被开发用于对抗癌症。其中,针对蛋白酶体的小分子抑制剂如硼替佐米、卡菲佐米、奥普佐米和伊沙佐米等均取得了显著的成功。此外,针对E1酶的MLN7243和MLN4924,针对E2酶的Leucettamol A和CC0651,针对E3酶的nutlin和MI‐219,以及针对DUB活性的化合物G5和F6也在临床前癌症治疗中展现出潜力。本综述总结了泛素化底物的最新进展及其在肿瘤代谢调控、TME调控和CSC干性维持方面的特殊功能,并综述了癌症的潜在治疗靶点以及靶向药物的治疗效果。
图表列表 图 1.1:限制性酶的发现时间表及一般历史里程碑……………………………………………………………………………………………………… 2 图 1.2:中心法则图…………………………………………………………………… 4 图 1.3:不同类型的限制性酶;ZFN 和 TALEN 序列特异性分别与特定三联体或有限特定 bp 序列有关。粉红色高亮表示所示限制性酶或内切酶的结合位点。粗线表示切割位点………………………………………………………… 5 图 1.4:CRISPR-Cas9 系统的功能组件(Bortesi, L. 和 Fischer, R.,2014 年)。面板 (a) 显示了 Cas9 正常发挥功能所必需的各个 RNA 组件。图 (b) 显示 RNA 成分连接在一起形成 sgRNA 序列。……………………………………………………………………...… 8 图 3.1:设计引物的 Lambda DNA 凝胶电泳(目标大小 1000bp)。孔 1 显示大小标准(以“M 表示),孔 2 和 3 显示成功 PCR …………………………………………………………………………………..... 20 图 3.2:基于 Origene 的 CRISPR-Cas9 方案的凝胶电泳。含有梯状物的孔标记为“L”。含有未切割的 PCR 产物储备孔标记为“P”。标签 2/3、1X 和 4X 表示反应中使用的 DNA 浓度。标准浓度为 1X。孔 2-4、6-8、10-12、14-16、18 和 19 显示 CRISPR/Cas9 反应产物 .……………………………….…….….… 21 图 3.3:基于 Origene 的改良版 CRISPR-Cas9 方案的凝胶电泳图,其中模板 DNA 浓度和 Cas9 试剂浓度均增加。含有梯度的孔标记为“L”。含有未切割的 PCR 产物原料孔标记为“P”。孔 3-6、7、8、10-13、14 和 15 含有 CRISPR/Cas9 反应产物。所有反应均含有 10uL 模板 DNA .…………………………………………………..……………………..……...…. 22 图 3.4:基于 IDT 的改良版 CRISPR-Cas9 方案的凝胶电泳图。含有梯状物的孔标有“L”。含有未切割的 PCR 原液产物的孔标有“P”。孔 2 不含任何产物。孔 3-6、7-10 和 11-14 含有 CRISPR/Cas9 反应产物。所有反应均含有 tracrRNA。孔 11-14 含有 3 倍量(uL)的模板 DNA……… ...