本研究探索了用多壁碳纳米管 (MWCNT) 增强的聚乳酸 (PLA) 复合材料的机械性能,重点研究了它们在三角形、倾斜和弯曲支架几何形状中的性能。拉伸试验表明,拉伸应力随 MWCNT 浓度增加而增加,最高可达 3 wt.%,但在 5 wt.% 时降低。较低浓度下机械性能的提高归因于 PLA 基质内 CNT 的均匀分散,从而促进了有效的负载传递。相反,在 5 wt.% 时,MWCNT 团聚会破坏基质的连续性,导致机械性能下降。CNT 与负载方向的对齐会显著影响性能,0° 打印角度由于优化的负载传递而产生更高的拉伸强度。支架的几何结构进一步影响挠度行为;观察到最大挠度随着 MWCNT 含量的增加而降低,特别是在 3 wt.% 时,但在 5 wt.% 时略有增加,表明由于聚集导致刚度降低。这项工作强调了 CNT 浓度和几何设计在优化 PLA/MWCNT 复合材料的机械特性中的重要性;揭示了改变几何形状如何影响应力分布对整体性能的影响。
聚(乳酸)(PLA)是一种具有增强强度和韧性的可堆肥脂族聚合物,它是包装产物的有前途的材料。聚合物混合是一种在财务上可行且简便的方法来升级其性质,例如其缓慢的降解和结晶速率和适度的延长,从而使其更适合。此外,使用天然纤维作为填充剂可以增强最终复合材料的生物基本特征并增强其抗氧化活性值,抗氧化活性值是用于活性包装的聚合物的关键特性。在此研究,研究了添加大麻纤维(HF)对含有85/15 W/W PLA/PPAD的聚乳酸)/聚(乳酸)/聚(丙烯丙烯)混合物的影响。还检查了将聚(乳酸)-co-co-poly(丙烯)块共聚物(COP)作为兼容剂的利用。通过多种技术的意识评估了复合材料的热,形态和机械资产。HF的添加增强了复合材料的疏水性和生物降解,使它们成为多种应用的候选者。此外,Compati Bilizer的引入成功增加了聚合物矩阵与HF之间的粘附,从而增强了性能。
从2023年生产的440万吨基于生物的聚合物(CA)生产的基于生物纤维素的聚合物,基于生物的含量为50%和环氧树脂含量,基于生物的含量为45%,在基于生物的生产的一半中,为24%和30%。,其次是100%基于生物的聚乳酸(PLA),其中11%,聚酰胺(PA)(基于Breio)的含量为8%和30%的基于生物的聚氨酯(PUR)为7%。聚乙烯(PE)(可提供100%和30%的基于生物的含量)和聚三甲基三苯二甲酸酯(PTT)(基于生物生物的31%)的份额为6和5%(图2)。聚(丁二醇 - 二苯二甲酸丁二酸)(PBAT),聚对苯二甲酸酯(PET),聚羟基烷酸(PHA)和含淀粉的聚合物化合物(SCPC)的份额均低于5%。Aliphatic polycarbonates (APC; linear and circular), casein polymers (CP), ethylene propylene diene monomer rubber (EPDM), polybutylene succinate (PBS), polyethylene furanoate (PEF) and polypropylene (PP) had a share below 1 % of the total bio-based polymer production volume and are not depicted (see Overview of bio-based基于生物的内容的聚合物特性)。
• 材料挤出(熔融沉积成型):目前最常见、最知名的 3D 打印技术。热塑性长丝,如 ABS(丙烯腈丁二烯苯乙烯)或 PLA(聚乳酸),被熔化并通过移动喷嘴分层沉积。 • 大桶聚合:最常用的方法是立体光刻 (SLA)。紫外激光作用于液态光聚合物树脂,使树脂逐层硬化。 • 材料喷射:将微小的进料液滴选择性地沉积到构建平台上。当液滴冷却并凝固时,下一层沉积在上面。 • 薄片层压:使用激光或刀片逐层切割和粘合薄层材料(例如,织物、铝箔),从而形成物体。 • 粘合剂喷射:将液态粘合剂喷洒到陶瓷或金属粉末床上,使其凝固。重复该过程逐层构建物体。 • 粉末床熔合:选择性激光烧结 (SLS) 是该技术最常见的形式。塑料、金属、陶瓷或玻璃粉末使用激光熔合在一起形成固体物体。• 定向能量沉积:金属粉末或金属丝在熔化的同时由移动的打印头沉积。
摘要:木质素是一种具有许多有希望的特性,对聚合物混合物有益。这项工作的主要目的是研究木质素与聚乳酸(乳酸)混合的加工性,兼容性和可回收性。将两种不同的商业牛皮木质蛋白和一个酚类有机溶胶木质素与聚(乳酸)以各种重量百分比混合,靶向高木质素含量(30、50和70 wt%)。获得的混合物通过融合沉积建模用于增材制造。所有获得的材料均通过拉伸试验,热重分析,不同的扫描量热法和31 p NMR的透度表征。通过重新排列多达四次,评估了聚合物混合材料的可回收性,并评估了它们的可打印性。结果表明,该材料在多达三个周期中保留了其机械性能,其拉伸强度降低了30%。酚类有机溶质木质素在更广泛的木质素含量上表现出更好的可打印性,同时保持相似的热和机械性能。关键词:基于生物的材料,回收,聚(乳酸),木质素,混合■简介
摘要。已对塑料的溶胀和增塑剂含量以及食物模拟剂的乙醇含量对基于聚乳酸(PLA)基于食物的食物接触塑料的三种稳定剂型添加剂的迁移动力学的影响。结果证明了影响物质在聚合物矩阵中扩散的参数,即,肿胀,增塑和移民的大小是从PLA到乙醇食品的迁移的决定性因素。肿胀和迁移都可以忽略不计。相反,委员会法规(欧盟,欧盟)的具体迁移限制超过10/2011。迁移是通过增塑促进的,但是只有当应用食品模拟剂膨胀塑料(至少20%(v/v)乙醇含量)时,才能观察到这种作用。以前尚未显示增塑剂增强迁移效应对肿胀的依赖性。当增塑导致迁移增加时,这也导致了较短时间内的特定迁移限制。即使基于PLA的塑料专门用于储存Hy-Drophilic Food,这是这些产品中最常见的应用领域。这些结果可以支持改善消费者安全和主动包装开发。
摘要:在过去的二十年中,在为各种工业应用(包括人类和兽医医学)的可生物降解聚合物材料开发中取得了巨大进展。他们是常用的不可降解聚合物来应对全球塑料浪费危机的有希望的替代品。在使用或可能适用于兽医的可生物降解聚合物中是天然多糖,例如几丁质,壳聚糖和纤维素,以及各种多植物,包括聚(ε-丙酮酸),聚酯酸,聚乳酸,乳酸 - 乙酸 - 甘氨酸酸)和多羟基甲酸盐。它们可以用作组织工程和伤口管理中的植入物,药物载体或生物材料。它们在兽医实践中的使用取决于它们的生物相容性,对生命组织的惰性,机械耐药性和吸附特征。必须专门设计其目的,无论是:(1)促进新的组织生长并允许与活细胞或细胞增长因子进行控制的相互作用,(2)具有机械性能,可以在植入物应用时解决功能,还是(3)在将药物运送到其目标位置时将药物运送到吸毒者时,将药物输送到其目标位置。本文旨在介绍有关兽医生物降解聚合物研究的最新发展,并强调该领域的挑战和未来观点。
这项研究介绍了一种新的方法,用于使用人工神经网络(ANN)和响应表面方法(RSM)进行生物相容性聚乳酸(PLA)/聚甲基甲基丙烯酸酯(PMMA)混合。目标是优化PMMA含量,喷嘴温度,栅格角度和打印速度,以增强形状记忆力和机械强度。材料,PLA和PMMA是融化的,并使用基于颗粒的3D打印机打印4D。差异扫描量热法(DSC)和动态机械热分析(DMTA)评估混合物的热行为和兼容性。ANN模型与RSM模型相比,ANN模型表现出了出色的预测准确性和概括能力。实验结果显示,形状回收率为100%,最终拉伸强度为65.2 MPa,明显高于纯PLA。用优化参数打印的生物螺旋螺旋体展示了出色的机械性能和形状的记忆行为,适用于生物医学应用,例如骨科和牙科植入物。本研究提出了一种用于4D打印PLA/PMMA混合物的创新方法,强调了它们在创造先进的高性能生物相容性材料方面的潜力。
在过去的 30 年里,增材制造 (AM) 或 3D 打印已成为许多工业和实践相关材料的著名制造技术。1–9 与传统的减材制造 (SM) 不同,AM 迅速普及,因为它能够从许多不同的起始材料创建更复杂的几何形状。10 立体光刻 (SLA)、选择性激光烧结 (SLS)、数字光处理 (DLP) 和熔融沉积成型 (FDM) 是一些广泛使用的 AM 技术。在这些方法中,FDM 可能是材料工程师和业余爱好者最常用的方法。FDM 涉及将熔融的长丝通过加热的喷嘴挤出到构建板上以形成部件,然后逐层构建直到完成最终的打印产品。虽然 FDM 是一种易于理解和采用的技术,但其主要缺陷在于成品打印件具有明显的各向异性。尽管这种特性的不均匀性通常会导致部件之间和部件之间的巨大差异,11 但仍然有许多商品聚合物长丝,包括丙烯腈丁二烯苯乙烯 (ABS)、聚乳酸 (PLA)、聚酰胺(例如尼龙)、聚碳酸酯 (PC)、热塑性聚氨酯 (TPU) 和聚对苯二甲酸乙二醇酯 (PET) 及其共聚物,都可以通过 FDM 以良好的尺寸保真度进行打印。
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,