利用放射免疫沉淀分析(RIPA)裂解缓冲液(Servicebio,武汉,中国)获得总蛋白。使用双辛可宁(BCA)分析(Solarbio,北京,中国)定量蛋白质浓度。加入上样缓冲液后,将样品煮沸 5 分钟。然后,将 20 μg 蛋白质添加到每个泳道中,通过 8–15% 十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,然后转移到聚偏氟乙烯(PVDF)膜上,用 5% 脱脂奶粉在含有 0.1% Tween 20 的 Tris 缓冲盐水(TBST)中封闭 2 小时。将稀释的针对 OASL(1:1,000)和 3-磷酸甘油醛脱氢酶(GADPH;1:10,000)的一抗与膜在 4 ℃ 下孵育过夜。用TBST清洗10 min后,与相应抗体孵育2 h,再用TBST清洗膜3次,最后采用电化学发光法(ECL,Thermo,China)观察结果。
摘要:风洞中需要对马赫数进行精确监测与控制,而直接在线获取马赫数非常困难,尤其当风洞系统处于多模态时。针对这一问题,提出了一种基于核偏最小二乘法的针对多模态风洞系统的马赫数预测算法。首先,为了反映实时变化,采用时间片偏最小二乘回归方法;然后,为了使模型能够代表除以关键过程变量后的整个工作模式的信息,建立了均值偏最小二乘模型,并与时间片模型进行了比较;然后,考虑到风洞系统具有较强的非线性特性,采用适用于非线性系统的核偏最小二乘法对马赫数进行预测。结果表明:均值模型优于时间片模型,单模态模型的预测能力优于多模态模型,核偏最小二乘法比偏最小二乘法更适用于风洞系统。
在体育领域,大麻被世界反兴奋剂机构(WADA)禁止在2004年以来的所有运动中。少数关于体育锻炼和大麻的研究集中在主要化合物上,即δ9-四氢大麻酚。大麻二醇(CBD)是另一种著名的植物大麻素,这些植物大麻素是在大麻干燥或培养的制剂中。与δ9-四氢大麻酚不同,CBD是无毒性的,但表现出对医疗用途很有趣的药物性特性。CBD的全球监管状况很复杂,这种化合物在许多国家仍然是受控物质。有趣的是,自2018年以来,世界反兴奋剂机构从竞争中或退出竞争的违禁物质清单中删除了CBD。WADA最近的决定使运动员开门供CBD使用。在本意见文章中,我们希望揭示在临床前研究中发现的不同的CBD属性,可以在运动领域中进一步测试以确定其效用。临床前研究表明,CBD由于其抗炎性,镇痛,抗焦虑,抗焦虑,神经保护特性及其对睡眠效果周期的影响可能对运动员有用。不幸的是,在锻炼的背景下,CBD上几乎没有临床数据,这使得它在这种情况下的使用仍然过早。
吩嗪是橡胶防老剂RT-base生产废渣的主要成分,仅我国RT-base废渣中吩嗪的年产量就超过1000吨,目前产生的吩嗪主要通过燃烧处理,每年释放出3500多吨二氧化碳和大量的氮氧化物。此外,吩嗪还是一种生物质可衍生的物质,可以从取之不尽的木质素衍生的邻苯二酚中高效、大量地生产。15,16吩嗪及其衍生物具有很强的氧化还原活性,被发现是优秀的OEM,包括阳极或阴极材料,在实际应用中显示出巨大的潜力。17 – 20其中,二氢吩嗪(DHP)衍生的正极材料表现出优异的性能,甚至与商业正极材料相媲美。 18,21 – 23 然而,该类材料的实际应用仍存在一些障碍需要解决。需要进一步努力提高它们的易获得性和比容量,即优化合成工艺和降低分子中非活性部分的比例。之前,我们报道了一种稳定但电容较低的 DHP 聚合物 (PVBPZ),其比容量仅为 95 mA hg − 1。PVBPZ 的低比容量主要是由于苄基部分在高电压下的电化学不稳定性,导致其无法利用第二氧化还原电位。因此,PVBPZ 只能
摘要:了解半导体聚合物的复杂结晶过程是有机电子技术进步的关键,因为这些材料的光电特性与其固态微结构密切相关。这些聚合物通常具有半刚性主链和柔性侧链,这导致它们在液态下具有强烈的组织/排序趋势。因此,这些材料的结晶通常发生在表现出至少部分分子有序的液态中。然而,先前存在的分子顺序对半导体聚合物甚至任何聚合物结晶过程的影响迄今为止仍是未知的。本研究采用快速扫描量热法 (FSC) 探测聚(9,9-二- n -辛基芴基-2,7-二基) (PFO) 在各向同性无序熔融状态 (ISO 状态) 和液晶有序状态 (NEM 状态) 下的结晶动力学。我们的结果表明,预先存在的分子顺序对 PFO 的结晶有着深远的影响。更具体地说,它有利于有效晶体成核中心的形成,从而加速相变早期阶段的结晶动力学。然而,与从 ISO 状态结晶的样品相比,从 NEM 状态结晶的样品需要更长的时间才能达到完全结晶(在二次结晶阶段),这可能表明预先存在的分子顺序减慢了结晶最新阶段的进展,即受分子扩散控制的阶段。数据与 Avrami 模型的拟合揭示了不同的结晶机制,最终导致独特的半结晶形态和光致发光特性。因此,这项工作强调了理解聚合物半导体的加工、结构和特性之间的相互关系的重要性,并为通过新开发的 FSC 方法对此类材料进行基础研究打开了大门,而这在传统技术中是不可能实现的。■ 简介
在过去十年中,对便携式电子设备的需求迅速增加,这促使电池生产的增长增长。自从1990年代开发作为商业能源储能解决方案以来,锂离子电池(LIB)由于其较长的周期寿命,高能量密度,低自我放电速率和高工作电压而引起了科学和工业的极大关注。生产LIB需要大量的聚合物粘合剂 - 通常是聚偏二氟乙烯(PVDF),以进行处理和性能。但是,由于该材料是石化衍生的,因此它远非“绿色”或可持续性。另一方面,聚合物及其构建块在整个自然界中被广泛发现,并且可以以低成本从生物量中获得。因此,用生物质衍生的粘合剂代替PVDF是减少LIB环境足迹的一种有前途的方法。此外,聚合物粘合剂在下一代电池性能中起着至关重要的作用。例如,硅(Si)是一种有前途的大容量阳极材料,因为它具有高理论能力(4200 mahg -1),工作势较低,并且在地壳中具有很高的丰度。但是,由于传统的粘合剂仅与硅的天然表面相互作用,并且无法维持电极的长期完整性,因此其在电荷/放电期间的巨大变化往往会导致循环寿命缩短。自然衍生的聚合物由于其高结构优势而在该角色上取得了更好的成功。在这篇综述中,我们总结了源自各种生物质源的硅阳极粘合剂的最新发展,重点是聚合物特性及其对电池性能的影响。我们根据自己对这些作品的评估提出了各种观点,并对该领域的未来前景进行了简要评论。
在过去十年中,对便携式电子设备的需求迅速增加,这促使电池生产的增长增长。自从1990年代作为商业能源存储解决方案的开发以来,锂离子电池(LIB)由于其较长的周期寿命,高能量密度,低自我排放速度和高工作电压而引起了科学和工业的极大关注。生产LIB需要大量的聚合物粘合剂 - 通常是聚偏二氟乙烯(PVDF),以进行处理和性能。但是,由于该材料是石化衍生的,因此它远非“绿色”或可持续性。另一方面,聚合物及其构建块在整个自然界中被广泛发现,并且可以以低成本从生物量中获得。因此,用生物质衍生的粘合剂代替PVDF是减少LIB环境足迹的一种有前途的方法。此外,聚合物粘合剂在下一代电池性能中起着至关重要的作用。例如,硅(Si)是一种有前途的大容量阳极材料,因为它具有高理论能力(4200 mahg -1),工作势较低,并且在地壳中具有很高的丰度。但是,由于传统的粘合剂仅与硅的天然表面相互作用,并且无法维持电极的长期完整性,因此其在电荷/放电期间的巨大变化往往会导致循环寿命缩短。自然衍生的聚合物由于其高结构优势而在该角色上取得了更好的成功。在这篇综述中,我们总结了源自各种生物质源的硅阳极粘合剂的最新发展,重点是聚合物特性及其对电池性能的影响。我们根据自己对这些作品的评估提出了各种观点,并对该领域的未来前景进行了简要评论。
在地面试验j7,8,91和飞行试验[lO,ll]中,高压太阳能电池阵列上出现了许多电弧现象。迄今为止,唯一的理论假设来自文献[112]。在这项研究中,有人提出,每个互连器上都有一层薄薄的绝缘污染物。这种污染物可能是由于暴露在空气中而产生的,也可能是在制造过程中产生的。来自空间等离子体的离子被互连器上的负电位吸引。这些离子积聚在表面层,导致层中形成电场。随着层继续充电,内部场变得足够大,足以导致电子发射到空间等离子体中。这种电子流导致层中随后加热和电离。这就是所谓的放电。在本文中,我们集中研究了低地球轨道负偏压太阳能电池阵列的行为,并对观察到的电弧提出了一种新的解释。有人提出,实验观察到的预击穿电流导致中性气体分子从太阳能电池盖玻片的侧面解吸。这些分子在互连线上积聚,并在表面气体层内发生电弧。推导出电压阈值的表达式,并研究了其与气体和几何特性的关系。电压阈值与等离子体密度无关,而与太阳能电池互连连接的几何结构密切相关。第 2 节回顾了实验工作,并描述了低地球轨道的等离子体和中性环境。第 3 节开发了击穿模型并获得了击穿阈值。第 4 节讨论了气体和几何参数的关系以及实验数据在该理论中的应用。最后,在最后一节中,提出了一些实验测试来阐明理论模型。
摘要:我们介绍了一项称为部分脱钩的任务,其中两分量子状态通过两个子系统之一的单一操作转换,然后受量子通道的作用。我们假设子系统被分解为直接的和产物形式,该形式通常出现在量子信息理论的背景下。统一是从分解下具有简单形式的一组单位中随机选择的。该任务的目标是使最终状态成为统一的典型选择,接近单位的平均最终状态。我们考虑一种单次场景,并在两种状态之间平均距离上得出上和下限。边界仅以涉及初始状态,通道和分解的量子状态的平滑条件熵表示。因此,我们提供了单发脱钩定理的概括。获得的结果将导致量子信息理论和基本物理学中的分离方法进一步发展。
^碳排放量是指温室气体(GHG)议定书中的二氧化碳当量排放量(CO 2 e),包括二氧化碳(CO 2 )、甲烷(CH 4 )、一氧化二氮(N 2 O)、氢氟碳化物(HFCs)、全氟碳化物(PFCs)、六氟化硫(SF 6 )和三氟化氮(NF 3 )。