使用顺序渗透合成 (SIS) 将无机氧化物渗透到聚合物内部是一种有效的方法,可用于创建广泛应用的材料。各种聚合物官能团与有机金属/无机前体之间的反应是独一无二的,因此了解一系列前体和聚合物之间的特定相互作用对于实现预测性工艺设计和将 SIS 的效用扩展到应用至关重要。在本文中,在三种不同的均聚物中的 Al 2 O 3 和 TiO 2 SIS 期间进行了原位傅里叶变换红外光谱 (FTIR) 测量:聚甲基丙烯酸甲酯 (PMMA)、聚己内酯 (PCL) 和聚 2-乙烯基吡啶 (P2VP)。从前体暴露后和随后的吹扫时间内的 FTIR 强度变化可以定量表明,这些聚合物与金属前体的相互作用动力学以及中间复合物的稳定性存在很大差异。这项比较研究的一个重要发现是,尽管 PCL 的羰基 (C=O) 和酯基 (COR) 官能团与相互作用较弱的 PMMA 相似,但 PCL 与金属前体的相互作用要强得多。这种行为表明,除了官能团的特性之外,还有其他因素决定了聚合物与 SIS 中的金属化合物的相互作用方式。PCL 以前从未在 SIS 工艺中出现过,它可能是一种有吸引力的聚合物模板,可用于实现均匀性和成本效益更高的 SIS。
羟基磷灰石(HA)已获得了一种在多种生物医学领域(如骨科和牙科)中广泛利用的生物陶瓷的认可。本研究的目的是将羟基磷灰石与Rohu鱼骨分离,并将其整合到具有牙科使用潜力的生物材料中。纳米复合膜。SEM研究将HA确定为纳米球,晶体尺寸低于30 nm。掺入PEGDMA中时,这些纳米颗粒会聚集,可能会破坏聚合物链相互作用并影响膜的机械性能。从经受较高温度钙化的鱼骨获得的XRD模式表现出高度强和尖锐的峰,表明去除了有机部分。FTIR结果证实,由于成功的自由基聚合反应,碳对碳双键的消失。PEGDMA和IRGACURE 2952(86.1409 kJ/mol)的融合焓高焓建议,他们需要高能量才能熔化,而其放热结晶焓(21.35378 kJ/mol)表示,固化后热量释放。添加羟基磷灰石减少了这些焓,表明更容易熔化和凝固,这可能有助于加工为生物医学应用开辟新的可能性,尤其是在牙科中。
N.V. Borzova,L.D。 varbanets分布,性质和α-半乳糖苷酶的实际意义。 微生物学期。 2024,N.V. Borzova,L.D。varbanets分布,性质和α-半乳糖苷酶的实际意义。微生物学期。2024,
摘要:人体工程学作为一门跨学科的应用管理科学,其必要性和重要性日益凸显。从微观人体工程学——对工作分析和组织、工作系统某些组成部分的改进的简单研究,到宏观人体工程学——复杂系统、大动态——城市人体工程学、组织人体工程学,都表明人体工程学对改善人类生活、改善工作和日常生活的幸福感做出了巨大贡献。本文简要介绍了世界人体工程学的发展历程和目前存在的主要人体工程学专业协会,并为人体工程学专家的培养提供了一些参考。关键词:人体工程学、人体工程学专家职业、人体工程学专业协会、培训专家。
随着空间数据流量的不断增加,空间光通信受到越来越多的关注,作为持续开发高速光学空间网络努力的一部分,尼康和JAXA一直在开发用于调制连续波信号的单横模10 W保偏Er/Yb共掺光纤(EYDF)放大器。我们已经完成了工程模型(EM)的开发,并计划在2024年作为国际空间站光通信系统的一部分演示该放大器。EM放大器具有三级反向泵浦结构,带有抗辐射的EYDF。它还包括泵浦激光二极管和功率监控光电二极管以避免寄生激光,这两者都已被证实具有足够的抗辐射能力,以及控制驱动电路。整体尺寸为300毫米×380毫米×76毫米,重6.3公斤。在标准温度和压力条件(STP:室温,1 个大气压)下,当信号输入为 -3 dBm 时,EM 放大器在总泵浦功率为 34 W 时实现了 10 W 的光输出功率。总电插效率达到 10.1%。在 STP 下,放大器在 10 W 下实现了 2000 小时的运行时间。我们进行了机械振动测试和工作热真空测试,以确保放大器作为太空组件的可靠性。在工作温度范围的上限和下限 ± 0 和 + 50 °C 下,输出功率和偏振消光比 (PER) 分别为 > 10 W 和 > 16 dB,而放大增益或 PER 没有任何下降。
美国的药物过量流行病非常复杂,大致可分为三波因过量死亡事件,即处方阿片类药物(第一波)、海洛因(第二波)和芬太尼(第三波)。1,2 从 2013 年到 2021 年,因芬太尼过量死亡的人数增加了 84 倍,总计近 261,000 人丧生。3 然而,非阿片类药物也经常导致致命的阿片类药物过量,而我们对多种药物使用如何影响过量脆弱性和治疗反应的理解仍然相对有限。4,5 最近,出现了涉及芬太尼和兴奋剂(即甲基苯丙胺和/或可卡因)的“第四波”药物过量死亡事件。 6 2010 年,全国范围内,兴奋剂与芬太尼过量致死病例的比率不到 1%。到 2021 年,兴奋剂与芬太尼共同致死病例的比率有所上升,占所有芬太尼过量致死病例的近三分之一(32.3%)。7
聚合条件:溶剂:水(35毫升),压力:20 bar,发起者:硫酸钾(KPS),表面活性剂:五氟氯辛酸铵酸铵盐(APFO)(启动器浓度为10倍),速度:750 rpm; A来自GPC(DMF,40 O C,PS标准,RI检测器)(ɖ:多分散指数); b来自DSC:加热和冷却周期从30到200 O C,10 O C/min。(T M:熔化温度和T C:结晶温度); C使用以下公式从1 H NMR确定:[ʃ2.92ppm/(ʃ2.92ppm +ʃ2.26ppm)] x 100; d使用以下公式46:f(β)=aβ /(1.3aα +aβ)d ftir d;其中α和Aβ分别对应于763和840 cm -1频段的FTIR光谱中的吸收率; E来自FTIR(CM -1):α763,β840和γ1233。
ᵝ䚻䛺㡿ᇦ䛻ர䜛 Brain Computer Interface 䠄 BCI 䠅䛾◊✲䛜 ┒䜣䛻⾜䜟䜜䛶䛔䜛䠊 BCI ◊✲䛿㐠ື㔝䛾ほ 䛛䜙ᶵჾ᧯స 䜢┠ᣦ䛩䜒䛾䛜ඛ⾜䛧䛶䛔䜛䛜 [1][2] 䠈㡢ኌゝㄒ䛻㛵䜟䜛 BCI ◊✲䜒䠈 fMRI 䜔 PET 䛷㘓䛥䜜䛯䝕䞊䝍䛾ほ 䛛䜙䠈ᴫᛕ ㉳ Æ ゝㄒ⾲⌧䝥䝷䞁䝙䞁䜾 Æ 㡢⠇䞉༢ㄒ䞉ᩥ⾲⌧ Æ Ⓨヰ㐠ື ⚄⤒⣔䛾άື䛻⮳䜛▱ぢ䛜✚䛥䜜䠈◊✲䛜άⓎ䛻䛺䛳䛶䛔 䜛 [3][4] 䠊䛣䛾ศ㔝䛷䛿 ECoG 䜢⏝䛔䛯◊㻌㻌㻌㻌㻌㻌㻌✲䛜ඛ⾜䛧 䛶䛔䜛䛜䠈㠀くⓗ䛻䛛䛴䝸䜰䝹䝍䜲䝮䛻ಙྕ䜢ほ 䛷䛝䜛 EEG 䜔 MEG 䛜ᐇ⏝䜢⪃䛘䜛䛸ᮃ䜎䛧䛔䠊 ሗ࿌⪅䜙䛿㡢ኌ㉳䛾 EEG ಙྕ䜢ᑐ㇟䛻䠈 ” ゝㄒ⾲㇟䛿 ▷㛫 tone-burst Ἴ⩌䛷䛒䜛 ” 䛸䛾௬ㄝ䜢❧䛶䠈⥺䝇䝨䜽䝖䝹≉ ᚩ㔞䜢ᢳฟ䛧䛯ᚋ䠈䝇䝨䜽䝖䝹䝟䝍䞊䞁䛛䜙┠ど䝷䝧䝸䞁䜾䛷 ㉳༊㛫䜢ྠᐃ䛩䜛䛸ඹ䛻䠈 0 䛛䜙 9 䛾 10 ᩘᏐ䛸ẕ㡢㡢⠇䛻ྵ䜎 䜜䜛 17 㡢⠇䜢ศ㢮䛩䜛◊✲䜢⾜䛳䛶䛝䛯 [5] 䠊ᮏሗ࿌䛷䛿䠈᭱ ึ䛻 17 㡢⠇䜢୕䛴䛾㡢⠇䜾䝹䞊䝥 ( ẕ㡢㡢⠇䠈᭷ኌ㡢⠇䠈↓ ኌ㡢⠇ ) 䛻ศ䛡䛶ㄆ㆑䛧䛯㝿䛾ᐇ㦂⤖ᯝ䜢㏙䜉䜛䠊䛣䛾ᐇ㦂䛷 䛿Ꮫ⩦䝕䞊䝍ᩘ䜢ቑ䜔䛩䛯䜑䠈 (i) ᩘᏐ㡢ኌ㉳ ( 䛾ྛ㡢⠇䝕 䞊䝍 ) 䛸ู䛻䠈㡢⠇⾜ (/ga- gi- gu- ge- go/) 䜢㉳䛧䛶᥇ྲྀ䛧䛯䝕 䞊䝍䜢Ꮫ⩦䛧䛯ሙྜ䠈 (ii) 㡢⣲䜢ྵ䜐㡢⠇ (/g/ = /ga, gi, gu, ge, go/, /o/ = /o, ko, so, to, no,…../) 䛛䜙㡢⣲䝕䞊䝍䜢Ꮫ⩦䛧䛯ሙྜ䠈 䛻䛴䛔䛶䜾䝹䞊䝥ෆ䛾㡢⠇䜢ㄆ㆑䛧䛯⤖ᯝ䜢ሗ࿌䛩䜛䠊 ⥆䛔䛶䠈ಶ䚻䛾㡢⠇㆑ู䜢┠ᶆ䛻䠈ከ㔞䝕䞊䝍䛾㞟䜢⾜䛖䠊 ⬻Ἴ㘓䛷䛿䠈⣧㡢䝖䝸䜺䞊䛾┤ᚋ䛻 1 ▷㡢⠇䛾㡢ኌ㉳䜢⾜ 䛖䛣䛸䛷䠈 1 ᅇ䛾㉳㘓㛫䜢▷䛟䛧䠈ከ㔞䝕䞊䝍䜢㘓䛷䛝 䜛䜘䛖䛻䛧䛯䠊䛣䜜䛻䜘䛳䛶䠈␚䜏㎸䜏䝙䝳䞊䝷䝹䝛䝑䝖䝽䞊䜽 (CNN) 䛺䛹䛾῝ᒙᏛ⩦ᑟධ䛜ྍ⬟䛻䛺䜛䠊ᮏᩥ䛷䛿䠊≉ᚩ㔞䛸 䛧䛶⬻ෆ✵㛫䛾 RMS ሗ䜢ᢳฟ䛧䠈 0 䛛䜙 9 䛻ྵ䜎䜜䜛 10 ಶ 䛾ᩘᏐ䛸ẕ㡢㡢⠇䛾 17 㡢⠇䜢䠈ḟඖ␚䜏㎸䜏䝙䝳䞊䝷䝹䝛 䝑䝖䝽䞊䜽䜢⏝䛔䛶㡢⠇ㄆ㆑䛩䜛䠊