我们非常荣幸地向您呈现《宾夕法尼亚大学生物伦理学杂志》第 XX 卷第 1 期,题为“重温旧事,探索新事物”。在我们杂志的整个生命周期中,我们有幸发表了来自全国各地的广泛主题的文章。自《宾夕法尼亚大学生物伦理学杂志》创刊以来,一些道德困境经常被重新审视,每次都从新颖的角度进行探索,而其他一些困境则随着时间的推移而出现,反映了我们不断变化的世界。在本期中,我们将前沿研究与既定的医疗实践相结合。通过这样做,我们希望为围绕健康和医疗保健服务的持续对话增添细微差别,运用生物伦理学推动更美好、更光明的未来。第一篇文章“激励筛查乳房 X 线照片:付费还是不付费”讨论了乳房 X 线照片作为筛查程序在最近推动激励计划的背景下的重要性。大峡谷州立大学的作者 Erica Wiencek 将对当前事态的有力分析与她自己作为诊断医学超声医师的经验相结合。第二篇文章《心灵隐私:读心 AI 的伦理和监管影响》探讨了 AI 的热点问题以及如何使用这项技术来解读他人的想法。作者 Kerissa Duliga(东北大学)概述了读心技术的发展,并讨论了目前缺乏 AI 监管,尤其是与读心能力相关的监管。第三篇文章《尿液好手:肾脏市场合法化》探讨了用合法肾脏市场补充器官移植过程的利弊。作者 Sriya Bandi(芝加哥大学)谨慎地处理了这个敏感话题,将生物伦理分析与对健康的社会决定因素的考虑相结合。我们的“生物伦理简讯”部分涵盖了生物伦理和健康领域的当前事件。在第一篇简讯中,Manav Parikh 讨论了全国和国际禁止生殖系基因组编辑的可行性和使用情况。在第二篇简报中,Ashrit Challa 采用生物伦理学方法探讨食品可及性和安全性概念,这些主题通常仅从卫生政策角度进行探讨。在反思联合国题为“2024 年世界粮食安全和营养状况”的报告时,本简报旨在将全球健康概念的食品正义与核心生物伦理原则的正义联系起来。我们要感谢我们的出版商 Claire Jun 和出色的编辑团队,没有他们,本期杂志就不可能问世。此外,还要特别感谢我们的教师顾问 Harald Schmidt 博士在整个编辑和出版过程中的支持。我们希望您喜欢这期宾夕法尼亚大学生物伦理学杂志,并激励您进一步参与生物伦理学领域。如有任何问题、意见,请联系我们。或通过 pbjeditorinchief@gmail.com 提出合作想法。最后,“重温旧事,探索新事物”标志着 Penn Bioethics Journal 出版了第 20 卷!自 2005 年春季出版第一本题为“大脑及其他……”的出版物以来,我们的编辑团队已大大壮大,这让我们能够扩大期刊的影响力。我们很荣幸能与多元化的作者和读者群体分享我们对生物伦理学的热情,我们期待 Penn Bioethics Journal 的未来!
最受关注的案件是涉及奥施康定制造商普渡制药的案件。该公司及其所有者萨克勒家族已与 23 个州和 2,000 多个城市和县达成临时和解。协议规定,该公司将宣布破产并解散(该公司此后已申请第 11 章破产);将成立一家由一组受托人管理的新公司,并将继续销售奥施康定,销售收入将归和解中的原告所有。普渡制药还将捐赠用于戒毒和过量用药的药物。据称,这笔交易总额高达 100 亿至 120 亿美元,是迄今为止最大的一笔赔付。然而,和解协议并不包括不当行为声明。(Lopez 2019)普渡制药的破产申请冻结了针对他们的诉讼,并将索赔转移到破产法庭。 (Joseph 2019)联邦破产法官将针对该公司的所有诉讼暂停至 4 月,以便双方继续努力达成和解。此前,该公司同意了一系列延长诉讼期限的条件,包括为针对阿片类药物危机的组织提供 2 亿美元的资金。(Mulvihill 2019)普渡制药此前在俄克拉荷马州以 2.7 亿美元达成和解,并在北达科他州的诉讼被驳回。(Bernstein、Davis 等人 2019)
摘要 为了设计用于治疗和诊断应用的药物输送剂,了解共价功能化碳纳米管穿透细胞膜和与细胞膜相互作用的机制非常重要。在这里,我们报告了聚苯乙烯和羧基封端聚苯乙烯改性碳纳米管的全原子分子动力学结果,并展示了它们在模型脂质双层中的易位行为以及它们将布洛芬药物分子输送到细胞中的潜力。我们的结果表明,功能化碳纳米管在数百纳秒内被膜内化,并且药物负载进一步提高了内化速度。负载和未负载的管都通过非内吞途径穿过双层的最近小叶,在研究的时间内,药物分子仍然被困在原始管内,同时仍然附着在聚苯乙烯改性管的末端。另一方面,羧基封端的聚苯乙烯功能化可使药物完全释放到双层膜的下层,而不会对膜造成损坏。这项研究表明,聚苯乙烯功能化是一种有前途的替代方案,并作为基准案例促进了药物输送。
我们在欧洲,美国和亚洲涵盖的全球存在使总体能量能够促进当地企业,并促进与客户的接近和亲密关系。这种存在依赖于TotalEnergies的集成平台,从而确保可靠的生产过程可以直接访问整个价值链中的安全和可追溯的原料。
摘要这项研究的目的是为任何量热法制造一种新型的温度传感器。引入了一种新的混合溶液方法,以制备聚苯乙烯/多壁碳纳米管纳米管纳米复合样品,其重量百分比为0.05、0.1、0.1、0.28、1和2的MWCNT。为了证明包含在聚合物基质中的分散状态,应用了SEM分析。另外,进行了XRD和拉曼光谱分析。在包含的约0.28重量%的情况下,研究并实现了电渗透阈值。最后,从室温到〜100ºC的样品测量样品的电阻。因此,对于大多数纳米复合材料样品,在T g之前和之后观察到正温系数和负温度系数效应。在20-50ºC下实现了电阻 - 温度曲线的最佳线性响应,该曲线使用二阶拟合曲线可以用来将T0〜70ºC用光。结果表明,在渗透阈值附近的聚苯乙烯/多壁碳纳米管纳米复合材料可以用作量热法的温度传感器。关键字:温度传感器,量热法,电渗透阈值,聚苯乙烯/MWCNT纳米复合材料,电阻。1。在过去的二十年中,由于纳米填充剂(例如碳纳米管(CNT))增强的聚合物材料(CNTS)吸引了科学和工业社区的广泛关注。CNT是聚合物基质的理想增强填充剂,因为它们的纳米尺寸,高纵横比,更重要的是它们出色的机械强度,电气和导热率[1]。聚合物-CNT纳米复合材料在柔性电池,太阳能电池,抗固定器件,电磁干扰屏蔽,辐射屏蔽和电池,超电容器,超电容器,压电电气传感器,温度传感器和辐射传感器[2-11]中具有巨大的潜在应用[2-11]。
Bamberger Amco聚合物的免责声明:Bamberger Amco聚合物(“ BAP”)不是该产品的制造商,BAP尚未以任何方式测试,设计,更改或修改该产品。BAP不会独立测试产品或验证本文档中提供的信息。本文档中提供的信息是由制造商提供的,BAP对用户对此信息的依赖和使用结果不承担任何责任。本文包含的信息不是任何形式的BAP保修,也不是旨在的。用户必须进行自己的代表性测试,以确定产品的安全性和适用性,以便其预期用途,并且用户假设产品使用的所有风险,无论产品是单独使用还是与其他材料混合使用,还是作为其他产品的组成部分。bap对于对产品提供的任何建议或结果,也不使用产品侵犯任何专利的任何建议或责任。因此,bap违反了所有明示或暗示的保证,包括适销性的保证以及适合任何特定目的或用途的保证。上述补救措施的局限性和责任的排除反映,并且是对产品收取的价格的考虑的一部分。
本研究旨在利用工业废料,如发泡聚苯乙烯包装废料 (EPS) 和废旧轮胎废料,生产出一种新的复合材料。新型复合材料 RTPC(橡胶轮胎聚苯乙烯复合材料)是废旧轮胎中的橡胶颗粒作为增强材料,以及通过回收 EPS 和汽油获得的基质的混合物。在本研究中,考虑了几种基质/增强材料重量比例(25%、30% 和 35%)和几种增强材料粒度(2-3、3-4 和 4-5 毫米)。进行了物理、机械和热特性分析,以确定复合材料的密度、弯曲模量、最大应力和热导率。根据得到的结果,得到的 RTPC 材料被认为是一种密度在 500 到 600 kg/m 3 之间的轻质材料。 RTPC 材料的热特性测试还表明,RTPC 是一种绝缘材料,导热系数在 0.22 至 0.23 W/mK 之间。另一方面,三点弯曲测试表明,RTPC 材料的弯曲性能较差。RTPC 材料可用作建筑施工领域的良好隔热材料。如果 RTPC 材料的机械性能得到改善,则可将其用作夹层结构中的结构部件,用于其他应用。
大型塑料生产[1,2]并使用导致塑料废物释放到水生,地面甚至空中生态系统中,这对当前和后代来说是一个很大的问题[3]。这些塑料材料随时间,紫外线辐射,环境变量等。可以分解成小的微型(1μm-5 mm,微塑料,MPS)和纳米(<1μM,纳米塑料,NPS)大小的颗粒[4,5]。MP和NP由不同的塑料类型制成,例如聚丙烯(PP),聚乙烯(PE)或聚苯乙烯(PS)[6,7]。NP和MP是新兴的污染物,可以在生物体中积累,其毒性和健康影响使它们成为国际环境,公共卫生和动物健康优先目标之一[7,8]。MP和NP可以通过吸入,摄入和皮肤接触进入人体[9]。,这些NM如何通过肠道,肺和上皮的答案非常稀少。有科学的证据表明它们可以到达全身循环,穿透并积聚在不同的组织和器官,例如大脑,眼睛,脾脏,肝,骨髓等。[9 - 11]。其他研究表明,MP和NP对水生[12]和陆生动物的发育,生长,繁殖,行为和死亡率产生影响[13]。此外,一些研究表明,NP可以在生物体中积累并可能引起炎症[14],氧化应激[7],能量代谢失调[15],内分泌
本信息基于杜邦认为可靠的数据。随着知识和经验的积累,本信息可能会发生变化。本信息并非用于替代任何必要的测试,用于评估杜邦产品是否适用于任何特定用途。由于使用条件不受杜邦控制,杜邦不作任何明示或暗示的保证,也不承担与使用本信息相关的任何责任。本信息并非用于许可经营或建议侵犯杜邦或其他人的任何商标、专利或技术信息,涉及任何材料或其使用。
摘要。聚合物纳米复合材料是晚期纳米材料,与纯聚合物相比,各种机械,热和屏障性能都具有显着改善。聚苯乙烯/氧化铝纳米复合材料是通过超声辅助溶液铸造方法制备的,在填充载荷范围为0.2至2%,并且在不同的超声频率下,即。58 kHz,192/58 kHz,430 kHz,470 kHz和1 MHz。对复合材料进行了机械性能测试(拉伸和撞击测试)和空化侵蚀测试,以研究功能性能的增强。填充物分散体。通过SEM分析和复合材料的功能性增强,研究了频率对基质中填充物分散体的影响。与纯种聚合物相比,以双(高/低)频率(192/58 kHz)制备的复合材料在低填充载荷下显示出更好的性质增强,并在没有超声波的情况下制备了复合材料,从而增强了超声辅助合成的发现,是纳抗体的合成的有益方法。关键字:超声;纳米复合材料;分散;机械性能;空化侵蚀