调整尿肌氨酸后,2,5-DCP和总二氯苯酚的1个单位增加与MetS患病率高5%有关(表2)。调整了生活方式和饮食因素(模型4)后,总二氯苯酚和MetS患病率之间的关联并不显着,而较高的2,5-DCP浓度仍然具有更高的MetS患病率。在类别分析中,我们还观察到2,5-DCP暴露与MetS患病率之间的显着和正相关。在增加四分位数的多元调整ORS(95%CI)为1.09(0.93-1.28),1.22(1.00-1.49)和1.34(1.04-1.73),在整个模型中为2,5-DCP(趋势4,P = 0.018)。此外,包括P-DCB生物标记物(包括P-DCB生物标志物)作为连续变量的受限立方样本模型,以评估P-DCB暴露和MetS患病率之间的剂量响应关系显示出相似的趋势(图1)。调查
摘要:已知肌氨酸可以改善大脑功能。肠道细胞与神经元细胞之间carnosine介导的相互作用的分子基础是,肌肽作用于肠细胞上并刺激外泌体分泌,这可以诱导神经元细胞中的神经突生长。这项研究旨在推断肌肉细胞与神经元细胞之间的肉瘤介导的相互作用。结果表明,肌肽诱导肌肉细胞分化,以及可以作用于神经元细胞的外泌体和肌动物的分泌。carnosine不仅对肠细胞,而且对肌肉细胞作用,刺激分泌因子的分泌,包括诱导神经元细胞中神经突生长的外部因素,以及已知参与神经元细胞活化的肌动物。作为肉瘤治疗后从肠细胞和肌肉细胞分泌的外泌体中的miRNA是不同的,可以假定肉豆蔻苷在每个细胞上作用于每个细胞,通过单独的因素和机制与神经元细胞相互作用。
摘要,全球未满足的需要快速且具有成本效益的预后和诊断工具,可以在床边或医生中使用,以减少严重疾病的影响。许多癌症被诊断出来,导致昂贵的治疗和预期寿命降低。患有前列腺癌,缺乏可靠的测试抑制了筛查计划的采用。我们报告了一个微电子的现代代谢物生物标志物测量平台,并将其用于前列腺癌检测。平台使用一系列光电检测器配置以单一整合的被动微型流体通道配置有针对性的,多重的,比色测定法,完成了4个代谢物的组合分析,在2分钟内,人类质量的滴剂中的滴剂量。使用L-氨基酸,谷氨酸,胆碱和肌氨酸的初步临床研究用于训练交叉验证的随机森林算法。该系统表现出对前列腺癌的敏感性,为94%,特异性为70%,曲线下的面积为0.78。该技术可以实施许多类似的测定面板,因此有可能彻底改变低成本,快速,护理点测试。
摘要:来自极端生物的冰结合蛋白(IBP)可以调节冰的形成和生长。从冷冻保存到缓解冻结 - 混凝土中的冻结到冷冻食品质地修饰符,IBP的技术应用很多(Bio)。提取或表达IBP可能具有挑战性地扩展,因此出现了聚合物仿生。但是,希望在聚合物中使用生物原样的单体和含杂种骨架的主体进行体内或环境应用来允许降解。在这里,我们研究了高分子量多发性作为冰结晶抑制剂(IRI)。低分子量多发性元素是弱的IRI。它的活性被认为是由于其采用的独特PPI螺旋而引起的,但尚未得到彻底研究。这里采用开放式N-羧基水溶液聚合的开放水性水溶液,以获得高达50000 g mol-1的分子量的多生产。这些聚合物的IRI活性低至5 mg ml -1,这与多肌醇的对照肽不同,多肌氨酸的对照肽并未以高达40 mg ml -1的抑制所有冰的生长。多产品在室温下观察到较低的临界溶液温度行为和组装/聚集,这可能有助于其活性。带有多发性的单冰晶体测定导致刻面,这与特定的冰面结合一致。这项工作表明,非乙烯基聚合物可以设计用于抑制冰的重结晶,并且可以提供更可持续或环境可接受的,同时合成可扩展的大规模应用途径。■简介
摘要:舌下疫苗具有诱导粘膜免疫以预防呼吸道病毒(包括严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 和流感)的益处,同时还可以实现无针自我给药。在之前的研究中,通过将重组 CoV-2 刺突蛋白受体结合域抗原与双链 RNA Poly(I:C) 佐剂相结合,创建了一种舌下 SARS-CoV-2 疫苗。这种疫苗在非人类灵长类动物食蟹猴身上进行了测试。本研究检查了含有血凝素 (HA) 抗原和 Poly(I:C) 佐剂的舌下流感疫苗引起的免疫和炎症反应,并评估了该疫苗在非人类灵长类动物中的安全性。含聚肌氨酸:胞苷酸佐剂的舌下疫苗可诱导粘膜和全身免疫。具体而言,舌下疫苗在唾液和鼻冲洗液中产生 HA 特异性分泌型 IgA 抗体,在血液中检测到 HA 特异性 IgA 和 IgG。根据血液检测结果和血浆 C 反应蛋白水平判断,这种疫苗似乎是安全的。值得注意的是,舌下疫苗接种既不会增加血液中炎症相关细胞因子(IFN-alpha、IFN-gamma 和 IL-17)的产生,也不会上调白细胞中促炎细胞因子(IL12A、IL12B、IFNA1、IFNB1、CD69 和颗粒酶 B)的基因表达。此外,DNA微阵列分析显示,舌下疫苗接种引起食蟹猴免疫相关反应相关基因表达变化的增强和抑制。因此,含Poly(I:C)佐剂的舌下疫苗是安全的,并且创造了增强和抑制免疫相关反应的平衡状态。
在同种异体器官移植受体的同种异体移植监测中,使用供体衍生的无细胞无细胞DNA(DD-CFDNA)在等离子体中的液体活检已成为一种新型方法。尽管对技术进行了早期临床实施和分析验证,但仍缺乏对DD-CFDNA定量方法的直接比较。此外,关于尿液中DD-CFDNA的数据是稀缺的,到目前为止,基于高通量测序的方法尚未利用独特的分子识别剂(UMIS)来实现绝对DDDNNA量化。在肾脏和肝脏受体的尿液和血浆中比较了不同的DD-CFDNA定量方法:a)使用等位基因特异性检测的液滴数字PCR(DDPCR),可检测七个常见的HLA-DRB1等位基因和Y染色体; b)使用定制的QIASEQ DNA面板的高通量测序(HTS),该面板的靶向121个常见多态性; c)商业DD-CFDNA定量方法(Alloseq®CFDNA,Caredx)。dd-cfDNA定量为%dd-cfDNA,用于DDPCR和HTS,并使用UMIS作为供体副本。此外,在临床稳定的受体中比较了尿液和血浆中的相对和绝对DD-CFDNA水平。此处介绍的HTS方法表明,%dd-cfDNA与ddpcr(r 2 = 0.98)和Alloseq®CfDNA(R 2 = 0.99)之间的相关性很强,仅显示最小的比例偏见。绝对DD-CFDNA拷贝也与UMI和DDPCR之间的HTS之间也有很强的相关性(τ= 0.78),尽管具有相当比例的偏置(斜率:0.25; 95%-CI:0.19 - 0.26)。在30个稳定的肾脏移植受者中,尿液中的中值%dd-cfDNA为39.5%(四分位数,IQR:21.8 - 58.5%),含36.6份/μmol尿肌氨酸(IQR:18.4 - 109)和0.19%(IQR:0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01-01): 12.9)在体液之间没有任何相关性的等离子体中。来自八个稳定肝脏受体的血浆中的中位数%DD-CFDNA为2.2%(IQR:0.72 - 4.1%),使用120份/ml(IQR:85.0 - 138),中位DDDNNA拷贝/ml低于0.1,尿液中低于0.1。尿液和等离子体中DD-CFDNA绝对和相对定量的方法的第一个正面比较,支持与方法无关的%DD-CFDNA截止