(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.28.640804 doi:biorxiv preprint
DEIB,米兰理工大学 意大利米兰 Lisa Novello 心智/脑科学中心 - CIMeC,特伦托大学 意大利特伦托 Sara Bosticardo 维罗纳大学计算机科学系 意大利维罗纳 Jenna Hanmer 彼得·曼斯菲尔德爵士成像中心,诺丁汉大学医学院,诺丁汉,英国 Gabriel Ramos Llorde Athinoula A. Martinos 生物医学成像中心,麻省总医院,哈佛医学院 波士顿,马萨诸塞州 Chantal Tax CUBRIC,加的夫大学 | 图像科学研究所,乌得勒支大学医学中心 加的夫,英国 | 乌得勒支,荷兰 Andrada Ianus Champalimaud 研究,Champalimaud 未知中心 葡萄牙里斯本 Noam Shemesh Champalimaud 研究,Champalimaud 未知中心 葡萄牙里斯本 Emmanuel Caruyer 雷恩大学、法国国家科学研究院、法国国家信息和自动化研究所、法国雷恩国家健康与医学研究院维罗纳 意大利维罗纳 伦敦大学学院 Marco Palombo 医学图像计算中心 英国伦敦
发表在预印本服务器bioRxiv 上 的论文尚未经过专家同行评审。预 计下个月,该公司将在美国基因和细 胞治疗学会年会上提交这篇论文。 与此同时,OpenCRISPR-1 或其变体 在多种生物体(包括植物、小鼠和人 类)中是否都能发挥作用还有待证 明。此外,技术的伦理和安全问题也 需要考虑。但令人兴奋的是,这些突 破性成果为生成式AI 开辟了一条新 途径,将对医学和健康领域产生广泛 影响,有望从根本上改变人们的基因 蓝图。
为了提高乘客的飞行舒适度,飞机客舱功能应按照人体工程学进行开发和设计。设计人体工程学的关键要素是目标用户的人体测量,这对于确保他们的身体特征与最终产品或系统设计良好契合至关重要。基于这一概念,本研究旨在建立马来西亚人口身体尺寸测量数据库,该数据库可用于大多数客舱功能的设计过程。共有 100 名志愿者参加了这项研究,并在几次数据收集会议中使用标准测量工具测量他们的身体尺寸。从收集到的测量数据的描述性统计数据中得出了马来西亚人口坐姿和站姿的几项标准人体测量数据。包括身高、站立眼高、站立肩高、站立肘高、站立臀宽、站立肩宽、坐姿肩高、坐姿肘高、坐姿眼高、坐姿臀腘长、坐姿臀膝长。此外,通过与参考的马来西亚人体测量数据库的比较分析,可以得出结论,马来西亚人口的身体特征正在随着时间而变化,预计未来身体测量值将进一步增加。这意味着飞机客舱特征的设计尺寸可能需要相应调整,以便为未来的马来西亚乘客提供舒适的飞行体验。关键词:人体测量;马来西亚人口;人体测量
摘要。严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 刺突蛋白 (S) 在宿主细胞进入中起着关键作用。影响 S 的非同义替换并不罕见,并且已在许多 SARS-CoV-2 谱系中固定下来。这些突变的一部分能够逃避中和抗体,或被认为通过增加对细胞进入受体血管紧张素转换酶 2 (ACE2) 的亲和力等机制增强传播。新墨西哥州和路易斯安那州的独立基因组监测计划同时检测到大量 20G 分支(谱系 B.1.2)感染的快速增加,这些感染携带 S 中的 Q677P 替换。该变体于 10 月 23 日首次在美国发现,但在 2020 年 12 月 1 日至 2021 年 1 月 19 日期间,它分别占路易斯安那州和新墨西哥州测序的所有 SARS-CoV-2 基因组的 27.8% 和 11.3%。 Q677P 病例主要在美国中南部和西南部发现;截至 2021 年 2 月 3 日,GISAID 数据显示美国有 499 个该变体的病毒序列。系统发育分析显示至少六个不同的 Q677H 亚谱系独立进化和传播,首次采集日期从 2020 年 8 月中旬到 11 月下旬不等。来自 20G(B.1.2)、20A(B.1.234)和 20B(B.1.1.220 和 B.1.1.222)分支的四个 677H 分支每个分支包含大约 100 个或更少的测序病例,而一对不同的 20G 分支簇分别由 754 个和 298 个病例代表。尽管采样偏差和奠基者效应可能导致了 S:677 多态性变体的出现,但该位置与 S1/S2 边界的多碱基裂解位点的接近性与其在细胞进入过程中的潜在功能相关性一致,表明可能赋予传播或传播优势的特征的平行进化。总之,我们的研究结果表明了同步趋同进化,从而推动了进一步评估 S:677 多态性对蛋白水解加工、细胞趋向性和传递性的影响。
核衣壳蛋白 QIGYYRRATRRIRGG HLA-DRB1*11:01 IGYYRRATRRRGGD HLA-DRB1*11:01 GYYRRATRRRIGGDG HLA-DRB1*11:01 TPSTWLTYTGAIKL HLA-DRB1*07:01 DQIGYYRRATRRIRG HLA-DRB1*11:01 PQIAQFAPSASAFFG HLA-DRB1*09:01 WPQIAQFAPSASAFF HLA-DRB1*09:01 QIAQFAPSASAFFGM HLA-DRB1*09:01 IAQFAPSASAFFGMS HLA-DRB1*09:01 AALALLLLDRLNQLE HLA-DRB4*01:01,HLA-DPA1 03:01/DPB1*04, HLA-DRB3*01:0, HLA-DRB1*13:02, HLA-DRB1*11:0, HLA-DRB1*04:04, HLA-DRB1*01:01, HLA-DRB1*04, HLA-DPA1*02:01/DPB1*01:01, HLA-DPA1*01:03/DPB1*02:01, HLA-DRB1*04:05, HLA-DRB1*03:01, HLA-DRB1*08:02, HLA-DRB1*15:01, HLA DQA1*01:01/DQB1*05:01 ALALLLLDRLNQLES HLA-DRB4*01:01, HLA-DPA1*03:01/DPB1*04:02, HLA-DRB3*01:01、HLA-DRB1*13:02、HLA-DRB1*11:01、HLA-DRB1*04:04、HLA-DRB1*04:01、HLA-DRB1*01:01、HLA-DRB1*03:01、HLA-DRB1*04:05、HLA-DPA1*02:01/DPB1*01:01、HLA-DPA1*01:03/DPB1*02:01、HLA-DRB1*08:02、HLA-DRB1*15:01、HLA-DQA1*01:01/DQB1*05:01 PRWYFYYLGTGPEAG HLA-DRB1*07:01 RWYFYYLGTGPEAGL HLA-DRB1*01:01尖峰糖蛋白 AAEIRASANLAATKM HLA-DQA1*05:01/DQB1*03:01 NAQALNTLVKQLSSN HLA-DRB1*11:01 EVFNATRFASVYAWN HLA-DPB1*02:01、HLA DPB1*04:02、HLA-DPB1*05:01、 HLA-DQA1*01:02、HLA-DQA1*05:01、HLA-DQB1*03:01、HLA-DQB1*06:02、HLA-DRB1*01:01、HLA-DRB1*04:04、HLA-DRB1*04:05、HLA-DRB1*07:01、 HLA-DRB1*08:02、HLA-DRB1*09:01、 HLA-DRB1*11:01, HLA-DRB1*15:01, HLA-DPA1*03:01, HLA-DPB1*01:01, HLA-DPA1*01:03, HLA-DPA1*02:01 VFRSSVLHSTQDLFL HLA-DRB1*07:01, HLA-DRB1*01:01, HLA-DRB1*09:01, HLA-DRB1*04:05, HLA-DRB1*04:01, HLA-DRB1*03:01, HLA-DQA1*01:02/DQB1*06:02, HLA-DPA1*03:01/DPB1*04:02, HLA-DRB1*13:02, HLA-DPA1*02:01/DPB1*01:01、HLA-DRB4*01:01、HLA-DQA1*05:01/DQB1*02:01、HLA-DRB1*04:04、HLA- DPA1*01:03/DPB1*02:01、HLA-DQA1*05:01/DQB1*03:01 等位基因 HLA-DRB3*01:01、HLA-DRB4*01:01、HLA-DRB5*01:01 不可用,因此未将其纳入计算。
关键字:青春期,扩散MRI,神经发育,微结构,髓鞘,转录组学缩写:A1C,主要听觉皮层; AIC,Akaike信息标准; CSEA,细胞特异性表达分析,DLPFC,背外侧前额叶皮层; FDR,错误发现率; f细胞外,细胞外信号分数; f神经突信号分数; f soma,soma信号分数; V IC,细胞内体积分数; IPC,下顶皮层; ITC,下颞皮质; M1,一级运动皮层; MD,平均扩散率; MFC,内侧额叶皮层; MRI,磁共振成像; mRNA-SEQ,mRNA测序; NODDI,神经突导向分散和密度成像; ODI,方向分散指数; OFC,眶额皮质; OPC,少突胶质细胞前体细胞; RIN,RNA完整性数; RNA-seq,RNA测序; ROI,利益区域; rpkm,每千瓦的读数为每百万映射的读数; S1,主要感觉皮质; Sandi,Soma和神经突密度成像; STC,上等颞皮层; V1,主要视觉皮层; VLPFC,腹外侧前额叶皮层。
抽象背景吸入的肺选择性泛 - 果酶激酶抑制剂nezulcitinib在第二阶段试验的第1部分中具有有利的安全性和潜在疗效信号,在严重的Covid-19患者中,支持第2部分。方法第2部分是一项随机的双盲阶段2研究(NCT04402866)。年龄在18-80岁的住院患者,患有确认的症状性共vid-19,需要补充氧气(不包括基线侵入性机械通气)1:1与雾化的Nezulcitinib 3 mg或安慰剂3 mg或安慰剂或安慰剂,最多7天,使用背景标准疗法(包括皮质类固醇)。功效终点包括至今第28天的无呼吸衰竭(RFF)作为主要终点。次要终点包括安全性和从基线氧饱和度(SAO2)/第7天启发的氧(FIO2)比的比例,而28天死亡率是预先指定的探索性终点。在2020年6月至2021年4月之间的结果中,接受了205例患者(Nezulcitinib,103;安慰剂,102)。在主要终点(RFF天;中位数,21.0 vs 21.0; p = 0.6137)或次级功效端点中,Nezulcitinib与安慰剂之间没有统计学上的显着差异。nezulcitinib通常具有良好的安全性。得出结论,尽管预先指定的原发性,次要和探索性疗效终点(包括RFF到第28天),但未达到第7天的基线SAO2/FIO2比率,而未达到28天死亡率,但NEZULCITINIB通常可以容忍良好,并且具有良好的安全性。需要进一步的研究来确定Nezulcitinib的治疗是否在COVID-19患者的特定炎症生物标志物定义的特定生物标志物群体中赋予临床益处。
IFN-γ的产生对于控制多种肠道感染至关重要,但是它对肠上皮细胞(IEC)的影响尚不清楚。隐孢子虫寄生虫仅感染上皮细胞,并且干扰素激活IEC中转录因子Stat1的能力是寄生虫清除所必需的。在这里,在感染过程中使用单细胞RNA测序在感染过程中促进IEC,发现在感染过程中,脑海中肠细胞的比例增加,并诱导IFN-γ依赖性基因信号,而未感染和感染细胞之间是可比的。这些分析是通过体内研究补充的,这表明寄生虫对照需要IEC的IEC表达。出乎意料的是,用IFN-γ的IFNG - / - 小鼠的治疗表明对这种细胞因子的IEC反应与寄生虫负担的延迟减少相关,但不会影响寄生虫的发展。这些数据集提供了对IFN-γ对IEC的影响的洞察力,并提出了一个模型,其中IFN-γ信号传导对未感染的肠上皮细胞对于控制隐孢子虫很重要。
