Three distinct groups were included in the study: a non-obese control group (CG, n = 15, average age = 32.8 ± 6.5 years, BMI = 21.4 ± 2.2 kg/m 2 ), an obese-android group character- ized by a Waist to Hip Ratio (WHR) greater than 1 (OAG, n = 15, age = 32.4 ± 3.9 years, BMI = 41.4 ± 3.9 kg/m 2,whr = 1.2±0.2)和一个肥胖的ggynoid,WHR小于1(OGG,n = 15,年龄= 35.4±4.1岁,BMI = 40.0±5.7 kg/m 2,WHR = 0.82±0.3)。所有参与者都以自己选择的步行速度行驶的步态分析跑步机一分钟。时空参数,步行循环阶段,垂直地面反应力(GRFV)和压力中心(COP)速度从胎面厂软件中采样。肌电图(EMG)的活性在步行期间收集了脚步的脚步,用于计算脚踝植物和背屈屈(gm/ta和sol/ta)之间的共激活指数(ci),用于计算不同步行阶段的脚踝植物(ci)。
喷嘴 160A-718 用于 Araldite 2010、2011、2012、2013、2014、2015、2017、2018 和 2027 200ml 或 400ml 墨盒尺寸。喷嘴 160A-818 用于 Araldite 2021、2022 400ml 墨盒尺寸。使用各种墨盒枪(50ml/200ml/400ml)首先确保材料在使用期限内。确保墨盒背面没有过多泄漏/损坏(填充时可能有非常少量的残留物,但不会过多)使用前将墨盒存放在良好的室温下很重要。这应确保产品自由流动并在推荐的静态混合器喷嘴中混合。如果在低温条件下储存,某些粘合剂可能会结晶,难以分散和排出。在建议的使用温度下,将喷嘴(对于 50ml 喷嘴,它是卡口连接,对于 200ml/400ml 喷嘴,它是新喷嘴的旋入式。较旧的系统需要使用固定螺母,因为喷嘴本身没有螺纹连接器)安装到墨盒上,然后放入相应的喷枪中以供使用。
Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *
第 1 小时平均值 40.32 ± 1.51 40.06 ± 1.28 40.35 ± 1.30 40.41 ± 1.55 40.27 ± 1.33 40.15 ± 1.28 NS 第 6 小时平均值 40.78 ± 1.61 40.49 ± 1.34 40.30 ± 1.26 40.78 ± 1.64 40.35 ± 1.14 40.53 ± 1.33 NS 第 1 小时平均值 - 0.66 ± 0.08 0.75 ± 1.56 0.81 ± 0.25 1.23 ± 0.51 0.82 ± 0.15 0.54 ± 0.22 NS 基线睡眠开始时间 40.60 ± 1.08 40.07 ± 1.43 40.32 ± 1.33 40.29 ± 1.52 40.23 ± 1.33 40.06 ± 1.30 NS 最高温度 41.50 ± 1.63 41.25 ± 1.36 41.49 ± 1.46 41.66 ± 1.68 41.23 ± 1.32 41.46 ± 1.48 NS 6小时内注射时间 170.8 ± 35.1 204.1 ± 38.5 198.7 ± 42.9 171.8 ± 30.3 178.6 ± 33.6 181.1 ± 23.0 NS 至最高温时间(分钟) 环境温度 26.4 ± 0.16 26.7±0.14 26.5±0.16 26.5±0.16 26.5±0.15 26.4±0.15 正常
本研究旨在评估使用最新一代等速测力计进行的躯干肌肉力量测试的有效性和重测信度。在 15 名健康受试者中测量了躯干屈肌和伸肌的离心、等长和向心峰值扭矩。肌肉横截面积 (CSA) 和表面肌电图 (EMG) 活动分别与竖脊肌和腹直肌的峰值扭矩和亚最大等长扭矩相关。在测试和重测期间确定了峰值扭矩测量的可靠性。对于所有收缩类型,肌肉 CSA 与峰值扭矩之间始终存在显著相关性(r = 0.74 � 0.85;P < 0.001),对于伸肌和屈肌,EMG 活动与亚最大等长扭矩之间也存在显著相关性(r P 0.99;P < 0.05)。组内相关系数在 0.87 和 0.95 之间,所有收缩模式的标准测量误差均低于 9%。测试和重测之间的峰值扭矩平均差异范围为 � 3.7% 至 3.7%,没有显著的平均方向偏差。总体而言,我们的研究结果证实了使用测试的躯干模块进行扭矩测量的有效性。此外,考虑到峰值扭矩测量的出色重测信度,我们得出结论,这款最新一代等速测力计可以放心用于评估躯干肌肉功能,以用于临床或运动目的。� 2014 Elsevier Ltd. 保留所有权利。
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计
冷战期间,欧洲北约盟国的国防支出平均占国内生产总值的 3% 以上,且随时间变化。冷战结束后,西方国家不仅大幅削减国防开支,还将军事研发削减 25% 或更多。从 2005 年到 2017 年,欧洲研发支出占国防总支出的比例从 5% 降至 3.5%。根据欧洲防务局的数据,2022 年,欧盟 (EU) 国防总支出为 2400 亿欧元,其中研发支出增加到 3.9%,即 95 亿欧元。然而,尽管最近国防总支出和国防研发支出都有所增加,但国防研发投资并未获得应有的收益。 2022 年,欧盟成员国在国防研发上花费了 35 亿欧元,占其国防总开支的 1.5%,高于 2011 年的 1.1%,但比 2021 年下降了 0.2%。这远低于 2017 年启动的欧盟安全与防务领域永久性结构性合作 (PESCo) 框架中设定的目标,即至少将国防总开支的 2% 投资于研究和技术。目前只有两个欧盟成员国实现了 2% 的目标,该目标于 2007 年 11 月在 EDA 部长级指导委员会上首次达成。以法国为首,这两个国家占欧盟国防研发总开支的 80% 以上。
背景:内源性配对联想刺激 (ePAS) 是一种神经调节干预,有助于中风康复。ePAS 涉及将内源性脑电图 (EEG) 信号(称为运动相关皮质电位 (MRCP))与外周电刺激配对。先前的研究已使用经颅磁刺激 (TMS) 来证明 ePAS 后皮质运动兴奋性的变化。然而,由于安全预防措施、不耐受性以及在更严重的患者中难以产生可测量的反应,TMS 作为一种中风研究的测量方法受到限制。我们有兴趣使用更可行的测量方法来评估 ePAS 对中风患者的影响。本研究询问 ePAS 是否会立即改善背屈肌的最大自主等长收缩 (MVIC) 和总神经肌肉疲劳的主要结果,以及肌肉力量、自主激活 (VA)、中枢疲劳、外周疲劳和肌电活动等次要结果。
脉冲激光沉积 (PLD) 是一种成熟的复杂化学计量薄膜沉积技术,在成功制造薄膜形式的高温超导体 (HTS) 后引起了广泛的研究关注。[1] 从那时起,PLD 主要用于在晶格匹配基板上外延生长多种复合氧化物的应用,但在光伏 (PV) 领域尚未得到探索。尽管在 21 世纪初,高导电性的 In 基 TCO 已通过 PLD 制造并成功用作 OLED 的前触点 [2,3],但关于 PLD 生长触点在 PV 设备中的应用的报道仍然很少。文献报道包括用于 CIGS [4] 和有机 [5] 太阳能电池的掺杂 ZnO 薄膜以及用于卤化物钙钛矿太阳能电池的金属氧化物传输层。 [6] 此外,PLD 已被提议用于硫族化物吸收层的制造 [7,8],最近又用于卤化物钙钛矿吸收层。[9,10]
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
