反对者:Lorenz Studer 教授 斯隆凯特琳研究所 发育生物学系 考试委员会:Anna Falk 教授 隆德大学 干细胞治疗系 András Simon 教授 卡罗琳斯卡医学院 细胞与分子生物学系 Åsa Mackenzie 教授 隆德大学 生物体生物学、生理学与环境毒理学系
朱超哲 , g 和董明浩 a,b,c,* a 西安电子科技大学生命科学与技术学院,分子与神经影像教育部工程研究中心,西安,中国 b 西安电子科技大学生命科学与技术学院,西安 跨尺度生命信息智能感知与调控重点实验室,西安,中国 c 西安电子科技大学人工智能学院,智能感知与图像理解教育部重点实验室,西安,中国 d 西北工业大学外国语学院,西安,中国 e 中国人民解放军资金支付中心,北京,中国 f 西安电子科技大学电子工程学院,智能感知与图像理解教育部重点实验室,西安,中国 g 北京师范大学,认知神经科学与学习国家重点实验室,北京,中国
结果:在对照胎儿中,所有参数随着胎龄的显着变化(p,.05)。与对照组相比,胎儿的胎儿在所有旋转参数中都显着减少(p#.02)。同样,在多个参数中检测到多粒孕妇的胎儿(p#.001)检测到显着降低。3个怀疑的胎儿表现出正常的回旋拟合瓣膜,支持MR成像诊断。XGBoost线性算法在脑脑和对照胎儿(n¼32)之间获得了分类的最佳结果(n¼32),曲线下的面积为0.90,召回0.83。同样,随机的森林分类显示了胎儿分类的多毛和对照胎儿(n¼33)的最佳性能,曲线下的面积为0.84,回忆为0.62。
志愿服务和慈善捐赠是两种常见的亲社会行为,但目前尚不清楚这些造福他人的行为是由相同还是不同的神经生物学机制支持的。在一项 fMRI 任务中,40 名参与者(20 名女性;年龄:平均 5 18.92 岁,范围 5 18.32-19.92 岁)向各种当地慈善机构捐献了他们的时间(以分钟为单位)和金钱(以美元为单位)。参与者在这些慈善机构上花费的时间和金钱都是最多的,但他们在捐献时间和金钱方面并没有差异。在神经层面,捐献时间和金钱都显示出与认知控制(例如背外侧 PFC)和情感处理(例如背侧前扣带皮层)有关的大脑区域的激活,但与捐献金钱相比,捐献时间更大程度地招募了与奖励评估(例如腹侧纹状体)和心理化(例如颞极)有关的区域。此外,楔前叶(也是参与心理化的区域)更强烈地追踪捐赠金额的变化,而不是捐赠时间的变化,这表明楔前叶可能对非社会交换(例如,捐赠金钱是一种金融交换)的增加比社会交换(例如,捐赠时间是一种人际交换)的增加更为敏感。我们的研究结果阐明了两种亲社会行为的共同和不同的神经生物学特性,这对人类如何分享不同的资源以对其社区产生积极影响具有启示意义。
信号信号在整个动物王国的病原体防御中起着至关重要的作用。然而,它是因为它在果蝇中背腹(DV)轴形成中的功能。到目前为止所研究的所有其他昆虫中,但在昆虫之外没有研究,DV构图也需要通行费。然而,在与果蝇更遥远相关的昆虫中,Toll的模式作用经常被BMP信号的扩大影响降低和取代,BMP信号的影响,在所有主要的后生动物谱系中,在DV轴形成中呈现的途径。这表明TOLL被整合到昆虫底部或昆虫进化过程中的基于祖先的BMP的图案系统中。观察到Toll信号传导在大多数昆虫胚胎的早期差异组织中具有免疫功能,这表明了如何从祖先免疫功能中使用TOLL的情况,用于其在轴形成中的新作用。
产后发育中的突触修饰对于神经网络的成熟至关重要。兴奋性突触的发育成熟发生在树突状棘的基因座,受生长和修剪动态调节。纹状体棘投射神经元(SPN)从大脑皮层和thalaus中获得兴奋性输入。spns和纹状体层间间接途径(ISPN)的SPN具有不同的发育根和功能。这两种类型的SPN的树突状脊柱成熟的时空动力学仍然难以捉摸。在这里,我们描绘了伏齿木剂和伏齿核(NAC)中DSPN和ISPN的树突状刺的发育轨迹。我们通过将Cre依赖性的AAV-EYFP病毒微注射到新生儿DRD1-CRE或Adora2a-Cre小鼠中,并通过微注射CRE依赖性AAV-EYFP病毒标记了SPN的树突状刺,并在三个级别上分析了旋转生成,包括不同的SPN细胞类型,子区域和后期。在背外侧纹状体中,DSPN和ISPN的脊柱修剪发生在产后(P)30 - P50。在背侧纹状体中,DSPN和ISPN的脊柱密度在P30和P50之间达到了峰值,而DSPN和ISPN的脊柱修剪分别发生在P30和P50之后。在NAC壳中,在p21 - P30后修剪DSPN和ISPN的棘突,但在NAC外侧壳的ISPN中未观察到明显的修剪。在NAC核心中,DSPN和ISPN的脊柱密度分别达到P21和P30的峰值,随后下降。总体而言,DSPN和ISPN中树突状棘的发育成熟遵循背侧和腹侧纹状体中不同的海上轨迹。
倾向于从事自主习惯行为与行为障碍有关,例如强迫症和成瘾。注意集合转移任务 (ASST) 结合了控制辨别刺激与偶然强化关联的变化,通常用于测量认知 / 行为灵活性的潜在过程。本研究的目的是使用静息态 fMRI 来识别介导 ASST 表现中特质样缺陷的灵长类动物大脑网络。对三组恒河猴(共 n = 35,18 只雌性)进行了自步调 ASST。连续 30 次课程的表现提高将猴子分成两组,称为高绩效者(HP,n = 17)和低绩效者(LP,n = 17),其中一人出现异常。与LP相比,HP在训练中表现的提高率更高,并且以更少的错误完成了8组/训练。另一方面,LP猴则将每个训练的大部分时间都花在第一组中,而且经常没有获得第一次逆转。在异氟烷环境下对静息态fMRI的全脑独立成分分析确定了四个强网络。其中,双重回归分析显示,HP和LP之间指定的“执行控制网络”有所不同。恒河猴执行控制网络中的特定连接区域,包括额叶皮质(腹外侧、腹内侧和眶叶)和背侧纹状体(尾状核、壳核),与持续性错误和反应延迟相关。总体而言,结果确定了与涉及额叶纹状体网络特定核的相关大脑活动相关的行为灵活性的特征。
抽象人类的前额叶和岛屿区域如何相互作用,同时最大程度地提高奖励和微型惩罚是未知的。利用人类的颅内记录,我们证明,与地方代表相比,相互作用可以更好地解散奖励或惩罚学习的功能特异性。前额叶和岛状皮质表现出非选择性神经种群以奖励和惩罚。非选择性响应会引起上下文 - 特定的核次间相互作用。我们确定了一个奖励子系统,具有眶额和腹侧前额叶皮层之间具有冗余相互作用的奖励子系统,后者的驱动作用。此外,我们发现了一个惩罚子系统,在岛屿和背外侧皮质之间具有多余的相互作用,并具有岛屿的驱动作用。最后,在奖励和惩罚学习之间切换是由两个子系统之间的协同互动介导的。这些结果提供了分布式皮质表征和支持奖励和惩罚学习的统一解释。
对信心的元认知评估提供了决策准确性的估计,可以在没有明确反馈的情况下指导学习。我们使用同时进行的 EEG-fMRI,直接比较人类如何从这种隐性反馈和显性反馈中学习。参与者执行了一项运动方向辨别任务,其中刺激难度增加以保持表现,并混合了显性反馈和无反馈试验。我们使用 EEG 解码分离了决策后信心的单次试验估计值,并发现这些神经特征在反馈时与可分离的显性反馈特征一起重新出现。我们沿着纹状体的背腹梯度识别了这些隐性反馈与显性反馈的特征,这一发现是通过 EEG-fMRI 融合才实现的。这两个信号似乎整合成外部苍白球中的聚合表征,可以通过丘脑和岛叶皮质广播更新以改善皮质决策处理,而不管反馈来源如何。
人类视觉皮层分为背侧、侧侧和腹侧流。一个长期存在的假设 10 是,功能组织成流是为了支持不同的视觉行为。在这里,11 我们使用基于神经网络的计算模型和大量 fMRI 数据集来测试视觉 12 流出现的原因。我们发现,针对特定流的视觉行为训练的模型很难捕捉神经 13 反应和组织。相反,自我监督的拓扑深度人工神经网络鼓励附近的单元做出类似的反应,成功地预测了神经反应、空间隔离 15 和跨流的功能分化。这些发现挑战了主流观点,即流 16 进化为分别支持不同的行为,而是表明功能组织源于一个单一原则:平衡从视觉输入中学习普遍有用的表示与 18 局部空间约束。19