摘要伤寒毒素是伤寒沙门氏菌(人类伤寒的病因)的重要毒力因子。这种毒素具有不寻常的生物学特性,因为它仅在宿主细胞内时才由伤寒沙门氏菌产生。一旦合成,毒素就会分泌到含有沙门氏菌的液泡腔中,然后通过囊泡载体中间体将其运输到细胞外空间。在这里,我们报告了伤寒毒素分选受体和细胞机制成分的鉴定,这些细胞机制将毒素包装到囊泡载体中并将其输出到细胞外空间。我们发现阳离子非依赖性甘露糖-6-磷酸受体充当伤寒毒素分选受体,并且外壳蛋白 COPII 和 GTPase Sar1 介导其包装到囊泡载体中。伤寒毒素携带者的形成需要伤寒沙门氏菌所含液泡的特定环境,而该环境由其 III 型蛋白分泌系统的特定效应物的活动决定。我们还发现 Rab11B 及其相互作用蛋白 Rip11 控制伤寒毒素携带者的细胞内运输,以及 SNARE 蛋白 VAMP7、SNAP23 和 Syntaxin 4 控制其与质膜的融合。伤寒毒素选择特定的细胞机制将其运输到细胞外空间,这说明了外毒素在细胞内病原体环境中发挥其功能的显著适应性。
清除死亡细胞或胞吞作用是解决炎症不可或缺的一部分。然而,动脉粥样硬化斑块的炎症微环境经常影响凋亡细胞和驻留吞噬细胞的生物学,导致胞吞作用功能障碍。为了解决这个问题,开发了一种嵌合抗原受体 (CAR) 巨噬细胞,它可以靶向和吞噬表达 CD47 的抗吞噬凋亡细胞。在正常和炎症情况下,CAR 巨噬细胞表现出相当于抗体阻断的活性。CAR 巨噬细胞的表面用针对肝脏 X 受体通路的活性氧 (ROS) 响应性治疗性纳米颗粒进行修饰,以提高其细胞效应活性。CAR 和纳米颗粒工程激活脂质通量泵的结合增强了细胞碎片清除并减少了炎症。进一步表明,未分化的 CAR-M 可以在微制造的血管系统内迁移。研究还表明,我们的 CAR 巨噬细胞可以充当嵌合开关受体 (CSR),以抵抗免疫抑制炎症环境。开发的平台有可能为下一代心血管疾病疗法的进步做出贡献,进一步的研究包括体内实验。
选定的细胞质过程的生理学。 细胞质和细胞膜的结构和功能。 。 膜封闭室的生理学。 选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。选定的细胞质过程的生理学。细胞质和细胞膜的结构和功能。。膜封闭室的生理学。 选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。膜封闭室的生理学。选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。选定的胞质过程的生理学。核糖体,polisomes。内鼠和胞吐途径。细胞与外细胞基质之间的相互作用。细胞骨架。细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。细胞膜生理学。脂质的结构及其在细胞和细胞外基质中的功能。脂质筏。小洞。质膜的不对称性。细胞运输。葡萄糖转运蛋白。ABC转运蛋白和MDR现象。ABC转运蛋白和MDR现象。
T细胞吸引双特异性抗体(T-bsAb,也称为咬合)疗法已成为一种针对多发性骨髓瘤的强大治疗方法。鉴于T-bsAb治疗将内源性T细胞重定向以消除肿瘤细胞,因此,重新激发功能失调的T细胞可能是提高T-bsab功效的潜在方法。虽然各种免疫刺激细胞因子可以增强效应T细胞功能,但对于T-bSAB疗法的最佳细胞因子治疗尚未固定,部分原因是由于关注了由异形干扰素(IFN) - γγ驱动的细胞因子释放综合征。在这里,我们在功能上筛选免疫刺激性细胞因子,以确定T-bsab治疗的理想组合伴侣。此AP揭示了白介素(IL)-21作为潜在的免疫刺激性细胞因子,具有增强T-bsAb介导的颗粒酶B和perforin的释放的能力,而无需增加IFN-γ释放。转录组分析和功能表征强烈支持IL-21选择性地靶向细胞毒性颗粒胞外增生途径,但不能靶向促炎反应。值得注意的是,IL-21调节了细胞毒性效应功能的多个步骤,包括上调共激活CD226受体,增加细胞毒性颗粒,并在免疫突触中促进细胞毒性颗粒的递送。的确,T-bsab介导的骨髓瘤杀伤是细胞毒性颗粒依赖性的,IL-21启动显着增强了细胞毒性活性。此外,体内IL-21处理可在骨髓T细胞中诱导细胞毒性效应子重编程,显示出协同的抗肌瘤作用与T-BSAB治疗结合使用。一起,通过IL-21利用细胞毒性颗粒胞吐途径可能是通过T-BSAB治疗获得更好反应的潜在方法。
70 kDa (EXO70) 蛋白的胞外囊泡成分是胞外囊泡复合物的组成部分,与胞吐过程中的囊泡束缚有关。抗霉菌位点 O (MLO) 蛋白是植物特异性钙通道,一些 MLO 同工型可促进真菌白粉病的致病。我们在此检测到拟南芥 exo70H4 和 mlo2 mlo6 mlo12 三重突变体植物在叶毛状体次生细胞壁的生物发生方面存在意外的表型重叠。生化和傅里叶变换红外光谱分析证实了这些突变体中毛状体细胞壁组成的缺陷。表达荧光团标记的 EXO70H4 和 MLO 的转基因系表现出这些蛋白质的广泛共定位。此外,mCherry-EXO70H4 错误定位在 mlo 三重突变体的毛状体中,反之亦然,MLO6-GFP 错误定位在 exo70H4 突变体的毛状体中。GFP 标记的 PMR4 胼胝体合酶(EXO70H4 依赖性胞吐的已知货物)的表达表明,mlo 三重突变体植物的毛状体中 GFP-PMR4 的细胞壁输送减少。植物和酵母细胞中的体内蛋白质-蛋白质相互作用测定揭示了 EXO70.2 亚家族成员和 MLO 蛋白之间的异构体优先相互作用。最后,exo70H4 和 mlo6 突变体结合时表现出协同增强的对白粉病攻击的抗性。总之,我们的数据表明 EXO70 和 MLO 蛋白在调节毛状体细胞壁生物合成和白粉病易感性方面存在异构体特异性相互作用。
摘要:肿瘤相关巨噬细胞 (TAM) 是肿瘤微环境 (TME) 中的重要参与者,可调节各种促肿瘤功能,如免疫抑制、血管生成、癌细胞增殖、侵袭和转移以及对抗癌疗法的抵抗力。TAM 还介导重要的抗肿瘤功能,并可以通过胞吐作用清除垂死的癌细胞。因此,毫不奇怪,TAM 表现出异质活性和功能可塑性,具体取决于它们所面临的癌细胞死亡的类型和环境。这最终决定了 TAM 的促肿瘤和抗肿瘤活性,使得 TAM 与垂死癌细胞之间的界面对于调节癌症生长和化放疗或免疫疗法的疗效非常重要。在本综述中,我们从细胞死亡途径、TME 驱动的变异、TAM 异质性和诱导细胞死亡的抗癌疗法的角度讨论了 TAM 与癌细胞死亡之间的关系。我们相信,更好地了解死亡癌细胞如何影响 TAM 可以改善组合抗癌疗法,尤其是与 TAM 靶向免疫疗法相结合。
摘要:对化疗药物和靶向药物的耐药性是成功治疗癌症的主要问题之一。已发现各种机制导致耐药性。其中一种机制是溶酶体介导的耐药性。溶酶体已被证明可以捕获某些疏水性弱碱性化疗药物以及一些酪氨酸激酶抑制剂,从而将其隔离在细胞内靶位之外。在大多数情况下,溶酶体隔离之后,其内容物会通过胞吐作用从细胞中释放出来。抗癌药物在溶酶体中的积累主要是由离子捕获引起的,但也有描述某些药物主动转运到溶酶体的情况。溶酶体低 pH 值是离子捕获所必需的,这是通过 V-ATPase 的活性实现的。在实验条件下,溶酶体趋化剂和 V-ATPase 抑制剂可以成功抑制这种隔离。临床试验仅对溶酶体药物氯喹进行了试验,结果不太成功。本综述的目的是概述溶酶体隔离和酸化酶的表达(癌细胞化学抗性的尚不为人所知的机制)以及如何克服这种形式的抗性的可能性。
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 是 COVID-19 的病原体,它严重依赖于其“入侵”宿主遗传和生物途径的天然能力。宿主的遗传易感性是疾病严重程度的关键因素。多基因风险评分对于风险评估、风险分层和预防不良后果至关重要。在这项研究中,我们旨在评估和分析俄罗斯人口中大量代表性样本中对严重 COVID-19 的遗传易感性,并建立一个可靠但简单且误差幅度较低的多基因风险评分模型。另一个重要目标是更多地了解严重 COVID-19 的发病机制。我们检查了 FYCO1 蛋白的三级结构,这是唯一一个在其编码区发生突变的基因,并发现了卷曲螺旋结构域的变化。我们的研究结果表明,FYCO1 可能会加速病毒的细胞内复制和过度胞吐,并可能导致严重 COVID-19 的风险增加。我们发现 COVID-19 与 3p21.31 处的 LZTFL1 、 FYCO1 、 XCR1 、 CCR9 、 TMLHE-AS1 和 SCYL2 之间存在显著关联。我们的研究结果进一步证明了严重 COVID-19 表型的多态性。
嵌合抗原受体天然杀手(CAR-NK)细胞疗法被认为是治疗血液系统恶性肿瘤的一种有希望的方式,尤其是B细胞恶性肿瘤。在这项研究中,我们使用在专有的可容纳脂质纳米颗粒(LNP)中配制的抗CD19 CAR mRNA开发了“现成”抗CD19 CAR-NK细胞。在体外环境中评估了mRNA-LNP递送到脐带血(UCB)衍生的NK细胞和原代T细胞中的效率,这表明NK细胞中的递送效率较高。进一步的研究表明,内吞机制,大胞吐作用在有效转染NK细胞用LNP中起可能作用。然而,通过该mRNA-LNP平台产生的CAR-NK细胞对CD19 +靶细胞的细胞毒性显着增强,例如EGFP + Raji稳定细胞系和源自源自难治性/复发性B-Cell B-Cell急性急性淋巴细胞性白血病(B-All)患者的原发性恶性B细胞。这些发现强调了mRNA-LNP平台在推进反对B细胞恶性肿瘤的CAR-NK疗法方面的承诺。