女性。12,13缺乏这种严重且令人衰弱的状况的理性治疗策略代表了紧迫的医疗需求。在大多数情况下,在潜在机制中,通过高弹性反应和临界神经蛋白的DYS调节的损伤似乎是最可能的情况。14 - 18小胶质细胞(大脑的免疫细胞)作为驻留巨噬细胞对感染和损伤的反应。19然而,这种所谓的神经浮动肿瘤可能会延长或过度,甚至会导致神经元损害。20 - 22我们先前报道了小胶质细胞反应性和神经元α-突触核蛋白(ASYN)的皮质积累的迹象,叙利亚金汉斯特人的脑反应性(ASYN)感染后14天(DPI),即,在19次缓解后14天(即DPI)。23,24这种动物模型是共同19的研究,由于其对原始病毒菌株的敏感性很高,并且对人类感染的敏感性很高,尤其是在发病机理,临床方面和性别差异方面。25 - 27 Asyn是一种高度丰富,可溶性和内在无序的突触前蛋白,在突触小囊泡胞吐作用中起作用。28最近,发现了ASYN的免疫调节作用。18然而,如果Asyn蛋白水平增加,例如响应损伤,则该蛋白可以汇总成具有潜在神经毒性能力的寡聚物和不溶性纤维。29,30
细胞多样化是在Ontog-Eny期间获得的系统发育中增加多细胞生物复杂性的基础。然而,所有细胞也有共同的功能,例如细胞分裂,细胞迁移,翻译,内吞,胞吐作用等。在这里,我们重新审视了这种常见功能所涉及的细胞器,回顾了这些细胞器中蛋白质意外差异的最新证据。例如,中心体或线粒体在不同的,有时是密切相关的细胞类型中的蛋白质组成上有显着差异。这与发育和疾病有关。特别引人注目的是这些和其他细胞器中RNA结合蛋白的大量和多样性,这使我们能够回顾不同细胞器和亚尺寸层中RNA的证据。我们包括有关转化涉及的(子)细胞器(例如核仁和核糖体)的讨论,还报道了意外的细胞类型特异性多样性。我们在这里提出,这些细胞器和隔室的异质性代表了调节细胞多样性的新机制。一个原因是,蛋白质功能可以乘以它们在不同的或范围内的不同贡献,也可以用具有月光功能的蛋白质来体现。专门的细胞器仍执行泛素函数,但在细胞类型特异性模式下,此处讨论了中心体,线粒体,小囊泡和其他或其他或其他或其他或其他或其他效果。这些可以用作用于存储和运输特定且功能上重要的调节器的调节中心。通过这种方式,它们可以控制细胞分化,质量和生存。我们进一步包括强调疾病相关性的例子,并提议在许多细胞类型中检查细胞器中的细胞器,以使其具有功能相关性的可能区别。
已评估了部分N-甲基-D-天冬氨酸受体(NMDAR)激动剂D-环甲烯(DCS),用于治疗多种精神疾病,包括痴呆,精神分裂症,抑郁症,抑郁症和暴露基于心理治疗的增强。大多数DC的潜在精神科应用(如果不是全部)的目标是增强或恢复认知功能,学习和记忆。它们的分子相关性是长期的突触可塑性;许多形式的突触可塑性取决于NMDA受体的激活。在这里,我们全面研究了通过DCS及其机制对海马中不同形式的突触可塑性的调节。我们发现,DCS在幼年大鼠的海马脑切片中阳性长期突触可塑性(长期突触增强,LTP和长期突触抑制)的长期突触可塑性(长期突触增强,LTP和长期突触抑制)的形式进行了正面调节。dcs与NMDAR的D-塞林/甘氨酸结合位点结合。对该部位的药理抑制作用阻止了LTP的诱导,而D-塞林/甘氨酸结合位点的激动剂增强了LTP,并且可以用功能代替LTP诱导范围。内源性D-丝氨酸最可能的起源是星形胶质细胞,其胞吐作用受星形胶质细胞代谢性谷氨酸受体(MGLUR1)调节。因此,NMDAR中的D-丝氨酸/甘氨酸结合位点是针对可塑性相关疾病的心理药物干预措施的主要目标。在与突触后神经元相邻的星形胶质细胞中的星形胶质细胞的功能消除,MGLUR1受体的抑制和G蛋白信号传导,阻止了NMDAR依赖性LTP和LTD的诱导。我们的结果支持增强DC和D-塞林介导的Gliotransersiss的双向依赖性海马突触可塑性的双向范围。
胞质和各种细胞质内包含(糖原颗粒和脂质液滴)的细胞质细胞器组成。平滑的内质网:结构,脂质代谢中的作用,解毒过程,糖原分解和钙的积累。颗粒状内质网的超微结构组织和功能。翻译过程中的主要步骤以及针对细胞质的蛋白质的合成与分泌,膜或溶酶体蛋白的合成之间的差异。蛋白质的翻译后修饰:分子伴侣的糖基化,羟基化和作用。COP蛋白涂层的转运囊泡。囊泡运输和融合过程的特异性:V-SNARE和T-SNARE蛋白。Golgi复合物:超微结构,生物合成过程和内质网中合成的分子的排序。构成和调节的细胞分泌:调节机制。内吞作用。通过山洞对可溶性分子的内在化:可吞作用,转胞胞菌病,小窝蛋白与信号分子的相互作用。受体介导的内吞作用:粘蛋白涂层的囊泡。内体和特定配体的不同分类途径。溶酶体:生物发生,形态,水解酶。吞噬作用和自噬。过氧化物酶体:细胞质蛋白降解的结构和功能机制:泛素 - 蛋白酶体系统和杂物。线粒体:形态,分布和复制。线粒体基因组。细胞骨架。线粒体酶复合物的定位和功能:克雷布斯循环的主要方面和氧化磷酸化。线粒体在钙稳态,凋亡和类固醇激素合成中的作用。微管,微丝和中间细丝:分子组织,细胞中的分布和不同细胞类型。细胞骨架在特定过程中的功能,例如细胞运动,吞噬作用,内吞作用,胞吐作用,囊泡运动。与微管(驱动蛋白和动力蛋白)和微丝(结合肌动蛋白)相关的蛋白质。中心体。膜细胞骨架。振动睫毛:结构和功能。主要边缘。
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
胰腺 β 细胞通过产生和分泌胰岛素在葡萄糖稳态中发挥关键作用。胰岛素释放受损会导致慢性高血糖症,并导致 2 型糖尿病 (T2D) 的发展。胰岛素储存在分泌颗粒中,当血糖水平升高时,分泌颗粒被运输到质膜上,然后胞吐到循环系统中。将葡萄糖代谢与胰岛素分泌联系起来的机制很复杂,涉及 Ca 2+ 和磷脂信号传导。膜接触位点 (MCS) 是细胞器膜紧密相邻的特殊区域,为两个区域之间的非囊泡脂质交换和 Ca 2+ 运输提供了管道,但它们对正常 β 细胞功能的重要性尚不清楚。在这里,我们发现了一种涉及 ER 和胰岛素颗粒的新型 MCS,它们促进了两个细胞器之间的脂质交换。氧固醇结合蛋白 (OSBP) 是一种胞浆脂质转运蛋白 (LTP),它以 Ca 2+ 和 pH 依赖的方式被募集到这些 MCS 中,并催化颗粒状 PI(4)P 与 ER 胆固醇的交换。这种机制对于正常的胰岛素分泌至关重要。跨膜蛋白 24 (TMEM24) 是一种 ER 锚定的 LTP,它与质膜 (PM) 动态相互作用并为其提供磷脂酰肌醇(其他磷酸肌醇的前体)。我们发现 TMEM24 定位在空间和时间上受 Ca 2+ 和二酰甘油 (DAG) 调节,并且从 PM 分离后,它稳定在 ER-线粒体 MCS 上。TMEM24 的缺失导致 ER 和线粒体 Ca 2+ 失调、ATP 产生受损以及胰岛素分泌减少。高分辨率成像进一步显示,TMEM24 还位于靠近线粒体的一组新合成的胰岛素颗粒附近。这些细胞器接触还由线粒体上的电压依赖性阴离子通道 (VDAC) 和 Mitofusin-2 以及胰岛素颗粒上的囊泡核苷酸转运体 (VNUT) 的存在定义。VNUT 表达减少会消除线粒体和胰岛素颗粒之间的相互作用,并导致胰岛素颗粒的生物合成和胞吐受损。总之,我们的研究结果强调了不同 MCS 在维持正常 β 细胞功能方面的重要作用。