曲霉的绿曲霉和绿色链霉菌的纤维素分离,从尼日利亚尼日利亚大学的废物储层土壤中分离出来1 *,Fadayomi M.和Rikiji U.S. 1美国生物学系,微生物学和生物技术系,尼日利亚尼日利亚尼罗河大学,尼日利亚,尼日利亚。*通讯作者的电子邮件地址:gloria.ezeagu@nileuniversity.edu.ng电话:+2348060322809摘要使用微生物作为工业经济酶的生物学来源的潜力刺激了在几种微型机器人中的细胞外酶活性的利用中的利益。这项研究的目的是使用纤维素刚果红琼脂培养基评估两种微生物,曲霉和链霉菌的纤维素降解潜力。从废物垃圾场收集的土壤样品被连续稀释,并在淀粉酪蛋白琼脂和SDA中接种,分别分离出颗粒状的葡萄链链球菌和A. oryzae。为了评估其利用纤维素的潜力,在纤维素刚果介质上接种了两种微生物中的每一种,并在30ºC下孵育7天。孵育后围绕菌落周围的清除区域证实了细胞外纤维素酶的分泌,并用作纤维素利用的指征。用仪表规则测量清理区域。在获得的结果中,两种微生物均表现出具有曲霉曲霉的纤维素利用能力,显示清除30.50±0.50 mm的区域,而链霉菌则显示清除60.00±1.00 mm的清除区。它不溶于水,并作为晶体存在。结果表明,这两种微生物都可以是酶纤维素酶的有效生产者,而链霉菌晶状体具有较高的产生纤维素酶的能力。关键词:纤维素,刚果红,废物降低,链霉菌核桃介绍研究纤维素的背景是植物细胞壁的主要成分,是陆地生态系统中最丰富的有机化合物的主要成分(Book等,2016)。其降解是一个关键过程,尤其是在土壤生态系统中,在养分循环和有机物分解中起着至关重要的作用(Datta,2024年)。化学(或热化学)和生化过程的组合用于在工业范围内降解这种多糖生物量,但是由于酸或碱基腐蚀引起的问题,高温,中和解决方案的脱水量以及对反应的难度,这些过程需要特殊设备,因此需要特殊设备,因此存在许多问题。与化学或热化学过程相比,该过程的生化方面是一种更环保和温和的方法,但没有产生足够的产量(Sato等,2020),因此需要微生物活动。此外,关于从生物质(尤其是纤维素材料)而不是化石燃料的各种燃料和化学物质的生产中,纤维素被认为是生产生物燃料和可再生原料化学品的最合适的原料,
摘要 从埃及土壤和食物来源中分离出产生磷脂酶 C (PLC) 的细菌。通过 16S rRNA 测序,将一种强效假单胞菌分离物鉴定为 P. fluorescens MICAYA,并以基因登录号 (OQ231499) 记录在 GenBank 中。通过 Plackett Burman 和中心复合设计进行优化发现,豆粕、酵母提取物、NaCl 和蛋黄显著提高了磷脂酶 C 的产量。Michaelis-Menten 动力学确定了 K m 为 0.4 mg/ml 蛋黄,V max 为 287 U/ml。Box Behnken 设计确定了 395 U/ml 磷脂酶 C 产量的最佳 pH 值为 6.5、0.55 g/l CaCO 3、1.05% 蛋黄、48.5°C。该磷脂酶对人成纤维细胞表现出低细胞毒性。磷脂酶 C 浓度(0.2-1 ml)可有效脱胶芝麻、洋甘菊、西洋菜、荷荷巴油、橄榄、黑种草和蓖麻油。磷脂酶 C 浓度为 0.4-0.8 ml/L 时磷脂减少率最高。荧光假单胞菌磷脂酶 C 提供了一种可生物降解的化学脱胶替代方法。总之,统计优化成功提高了磷脂酶 C 的产量。表征发现该酶在碱性 pH、中等温度和蛋黄底物下效果最佳。已证明多种植物种子油具有生物脱胶能力。进一步固定化和蛋白质工程可以提高磷脂酶 C 的工业效用。关键词:磷脂酶 C;荧光假单胞菌;培养基优化;油脱胶;酶动力学。 _____________________________________________________________________________________________________________ 1. 简介 磷脂酶 (PLC) 水解磷脂骨架中的磷酸二酯键,根据所涉及的具体磷脂种类产生 1,2-二酰基甘油和磷酸单酯。微生物磷脂酶是催化磷脂水解的酶。由于其广泛的底物特异性、温和条件下的高活性以及易于大规模生产,它们具有广泛的工业应用 [1]。磷脂酶已被用于修改磷脂结构以生产特定脂质、脱胶植物油、合成化妆品成分、改善面团的烘焙特性、产生风味和香气等 [2]。真菌、细菌和酵母等微生物来源的磷脂酶比植物和动物来源具有优势,因为它们可以通过发酵以高产量和纯度生产 [3]。最有效的真菌生产者是黑曲霉、环青霉和少根根霉。黑曲霉可产生高产量的磷脂酶 A1 和 A2 [4]。固定化黑曲霉磷脂酶 A2 对植物油的重复脱胶表现出良好的稳定性 [5]。最常见的细菌生产者是假单胞菌和芽孢杆菌。铜绿假单胞菌和蜡状芽孢杆菌产生胞外磷脂酶 C [6,7]。枯草芽孢杆菌分泌磷脂酶 A2,并且已经通过基因改造以提高产量。在稳定期,荧光假单胞菌可以产生各种具有抗菌潜力的次级代谢物,例如氢氰酸 (HCN)、绿脓杆菌素 (Pit) 和 2,4-二乙酰间苯三酚 (Phi),以及铁螯合代谢物 [8]。绿脓杆菌素、水杨酸和绿脓杆菌素。蛋白酶、磷脂酶 C 和脂肪酶是从各种环境中分离的荧光假单胞菌菌株产生的三种细胞外酶的例子 [9]。在稳定生长期测定的磷脂分解活性水平最高,表明生长阶段依赖机制负责诱导这些酶。此外,酵母生产者是隐球菌,它被固定化并用于大豆油脱胶。 Candida rugosa 是一种脂肪酶和磷脂酶生产者,固定化 C. rugosa 脂肪酶用于结构化脂质的生产 [10]。微生物磷脂酶,如磷脂酶 A1、A2、C 和 D,在脱胶、油脂酯交换、卵磷脂生物合成和废水处理应用中表现出良好的应用前景 [11]。它们的酶水解导致磷脂部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和表征,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。