图2-胶原酶在不植物环境中作用在根表面的作用:在根表面暴露时,预计会快速脱矿化。这种脱矿化暴露了根胶原纤维,这些胶原蛋白纤维可用于微生物生物膜及其酸性代谢产物。在存在生长因子和细胞因子的情况下,这些代谢产物释放并激活宿主基质金属蛋白酶(MMP)。在这种利基中,具有自己的胶原酶的细菌含量很高,再加上编码在根龋齿生物膜中的微生物胶原酶的基因的表达,表明生物膜和MMPS和MMPS
摘要背景:在脑出血(ICH)的治疗限制领域,近年来非侵入性经颅电刺激(tES)取得了长足的发展。转化研究推测经颅直流电刺激(tDCS)和其他类型的 tES 仍然是一种潜在的新型治疗选择,可以逆转或稳定认知和运动障碍。目的:本研究旨在比较评估 tDCS、经颅交流(tACS)、脉冲(tPCS)和随机噪声(tRNS)刺激等四种主要 tES 模式对胶原酶诱导的雄性大鼠感觉运动障碍和纹状体组织损伤的影响。方法:为了诱发 ICH,将 0.5 μl 胶原酶注射到雄性 Sprague Dawley 大鼠的右侧纹状体中。手术后一天,对动物连续七天施加 tES。在手术前一天和术后第 3、7 和 14 天通过神经功能缺损评分、转棒和悬线测试评估运动功能。行为测试后,适当准备脑组织以进行立体学评估。结果:结果表明,四种 tES 模式(tDCS、tACS、tRNS 和 tPCS)的应用显著逆转了胶原酶诱导的 ICH 组的运动障碍。此外,tACS 和 tRNS 接受大鼠在悬线和转棒测试中的运动功能改善高于其他两个 tES 接受组。结构变化和立体学评估也证实了行为功能的结果。结论:我们的研究结果表明,除了 tDCS 在 ICH 治疗中的应用外,其他 tES 模式,尤其是 tACS 和 tRNS 可被视为中风的附加治疗策略。关键词:脑出血,纹状体,经颅电刺激,运动功能,体视学
从Lipografter®系统中表征脂肪酸的脂肪酸盐过量的脂肪酸盐被置于无菌50ml离心管中,并运送到MTF生物制剂以进行表征。在1倍磷酸盐缓冲盐水(PBS)中洗涤脂肪酸2-3次,直到组织颜色为淡黄色。添加了涉及0.1%胶原酶型IA溶液(Sigma-Aldrich Inc.,GA)的修改隔离方案2后,添加了一个修改的隔离方案2,并在37ºC的水浴中孵育2小时(在搅拌下)。消化后,组织显得光滑,胶原酶消化被相等的维护培养基灭活,由DMEM/F12,10%胎牛血清(FBS)和1%青霉素/链霉菌素/链霉菌素(Fisher Scientific,PA)组成。然后将溶液离心以收集SVF颗粒。然后将SVF颗粒重悬于氯化铵溶液中,并在室温下孵育10分钟,以帮助裂解红细胞。最后,将溶液离心以隔离
考虑到基质金属蛋白酶 (MMP) 在包括癌症在内的各种病理状况中的作用,它们被视为当今药物发现的良好靶点。四环素类抗生素已被重新用于其抗癌活性。在这里,我们通过计算机模拟方法分析了一些四环素化合物,例如去甲金霉素、埃拉环素、莱姆环素和奥马环素与两组 MMP(即胶原酶和明胶酶)的结合亲和力,对其进行了研究。埃拉环素与不同 MMP 相互作用的 ΔG 值范围从 MMP1 的 -8.6 Kcal/mol 到 MMP9 的 -9.7 Kcal/mol,表明结合亲和力强。进一步的分子动力学模拟研究表明,MMP9-埃拉环素相互作用在虚拟生理条件下高度稳定且持久。在所分析的四种四环素中,埃拉环素对所有胶原酶和明胶酶表现出强大的广谱抑制潜力。因此,建议对该抗生素进行进一步的体外和临床前验证研究,以促进其在临床上的重新利用。
A2M的抗蛋白酶作用方式已得到很好的特征(1、4-6、8、9)。简要地,A2M分子由一对共价连接的二聚体组成,在结构的空心核中形成诱饵区域“笼”,该二聚体非常容易被蛋白酶裂解(1,6)。发生裂解时,A2M分子会立即进行构象重排,从而夹住蛋白酶,从而抑制蛋白水解活性并最终被肝脏对A2M蛋白酶复合物的清除率(4-6)。除了蛋白酶中和外,A2M还与促炎细胞因子结合,以减少软骨中细胞因子诱导的胶原酶的合成(2、3、5、8、9)。因此,A2M具有两个主要软骨的影响:与促炎细胞因子的结合,它们启动软骨降解过程和中和分解代谢酶的过程,这些酶驱动骨关节炎的发展(OA)。
演变图(n = 3)。d)37°C 胶原酶溶液中的酶促材料降解(n = 3)。e、f、g、h)光交联后不同水凝胶配方(分别为 40 DoM、60 DoM、80 DoM、100 DoM)的流变频率扫描(0.1 至 100 Hz)(n = 3)。i、j、k、l)根据独立水凝胶材料的频率扫描计算出的 Tan delta(n = 3)。m) 使用不同水凝胶配方的圆形体积打印模型的归一化形状保真度(n = 3)。n) 使用预期的 STL 模型进行形状保真度计算的体积打印模型作为比较,比例尺 = 5 毫米。o、p) 混合 60 DoM 水凝胶的 CAD 模型和光片重建,分别显示东岛雕像和陀螺模型,比例尺 = 2 毫米。
在这项研究中,使用胶原蛋白和氧化石墨烯(RGO)合成创新的导电杂种生物材料,以用作伤口敷料。用甘油塑料胶原蛋白凝胶(COL),并用辣根过氧化物酶(HRP)交联。FTIR,XRD和XPS证明了组件之间的成功相互作用。证明,增加RGO浓度会导致更高的电导率和负电荷密度值。RGO还提高了通过降低生物降解速率表达的水凝胶的稳定性。此外,通过酶促交联和多巴胺聚合的聚合也增强了水凝胶的稳定性,对I型I型胶原酶的酶促作用也得到了增强。然而,它们的吸收能力达到215 g/g,表明水凝胶具有吸收液体的高电位。这些特性的上升对伤口闭合过程产生了积极影响,在48小时后达到了84.5%的体外闭合率。这些发现清楚地表明,对于伤口愈合目的,这些原始的复合生物材料可能是可行的选择。