这里的无线电力传输,也称为无线能量传输或无线电,是一项技术,它可以将电能从电源转移到电气设备,而无需物理连接或电线。它利用各种方法和原理在距离上传输电源,从而在不受传统有线连接的限制的情况下进行方便有效的装置充电或操作[1]。无线功率传输最常用的方法是电磁感应。此过程涉及使用两个线圈:发射器线圈和一个接收器线圈。发射器线圈连接到产生振荡磁场的电源。将接收器线圈放置在此磁场的范围内时,它会诱导线圈中的电流,该电流可用于为设备供电或为电池充电[2]。无线电源传输的另一种方法是通过使用谐振耦合。此方法依赖于共振频率的原理,在该原理中,发射器和接收器线圈的设计为具有相同的谐振频率。通过匹配频率,即使在更长的距离内,也可以在两个线圈之间有效传输功率。无线电源传输具有广泛的应用。它通常用于消费电子设备,例如智能手机,平板电脑和可穿戴设备,无线充电垫或垫子用于无需物理连接器而无需实现这些设备。无线功率传输的关键优势之一就是它的便利性。也可以在工业环境中用于电源传感器,监视设备和其他需要频繁充电或有限访问电源的设备[3]。它消除了对电缆和连接器的需求,减少了混乱,并使无缝集成到我们的日常生活中。此外,它可以通过最大程度地减少电击风险并减少物理连接器的磨损来提高电气系统的安全性和可靠性。但是,无线功率传输也面临挑战。效率是一个重大问题,因为在传输过程中可能会发生功率损失,尤其是在更长的距离内。需要制定标准和法规,以确保不同设备和电源的兼容性和安全性。此外,在更大范围内实施无线功率传输时,要考虑的可伸缩性和成本效益是要考虑的重要因素。尽管存在这些挑战,但无线功率传输仍具有未来的巨大潜力。随着技术的不断发展,我们可以期望效率,范围和可扩展性进一步提高,这为充电和无线电设备提供无线电设备的世界铺平了道路。
太空探索的主要挑战之一是妥善保护宇航员免受太空环境的危害。因此,宇航服是为了在舱外活动期间保护机组人员而设计的,但它们目前无法妥善承受微流星体和轨道碎片 (MMOD) 等撞击造成的损坏,如果被刺破,它们会减压和坍塌,造成灾难性的后果。在这种情况下,将自修复材料整合到宇航服中的可能性引起了科学界的关注,因为它可以实现自主损伤修复,从而提高安全性和使用寿命。然而,太空环境对这些材料的影响仍有待确定,并可能导致其整体性能显著下降。本文介绍的研究重点是应用于宇航服的第一个例子,分析了一组候选自修复聚合物在暴露于模拟太空辐射之前和之后的修复性能。在未辐照的情况下,还对双层膜和以这些聚合物为基质的纳米复合材料进行了比较。本研究还旨在通过将自修复材料的标准表征(例如:划痕、冲击和穿刺测试)与空间辐射对其影响的评估相结合,填补这两个方面的空白。了解辐射是否以及如何影响损伤恢复性能,实际上是确定给定的自修复材料是否真的可以用于太空应用的基础。通过穿刺损伤后的现场流速测量来评估自修复响应。收集最大和最小流速、它们之间的时间以及穿刺后 3 分钟内损失的空气量作为修复性能参数。对于纯材料,然后在伽马射线辐照样品上重复相同的测试,以研究暴露于模拟空间辐射后自修复性能的变化。结果表明,粘性响应较低的系统的修复性能较高,辐照后修复性能会降低。因此,需要进一步分析空间环境对所呈现材料的影响。 NASA HZETRN2015(高 Z 和能量传输,2015 版)软件也用于模拟舱外活动期间银河宇宙射线对航天服的作用。将经典的航天服多层与将标准内胆替换为每种分析材料层的配置进行比较,以确定最有希望的候选者,并确定添加纳米填料是否会显着提高屏蔽能力。
Vivekanandha妇女技术学院,Elayampalayam,Tiruchengode,Tiruchkal-637205,印度泰米尔纳德邦,B*物理学系,Vivekanandha妇女工程学院,妇女(Autayampalayam),Elayampalayam,tiruchegode,namakkal-63372205 Chemistry, Vivekanandha College of Engineering for Wom- en(Autonomous),Elayampalayam, Tiruchengode, Namakkal-637205, Tamilnadu, India d Department of Physics, Mahendra Arts and Science College.Kalippatti, Tiru- chengodu, Namakkal–637501, Tamil Nadu, India The present work involves in the synthesis and使用微波的高屈服照射技术的原始和“ Mg”相关的WO 3 .H 2 O纳米粉末的表征。衍射模式存在分阶段的正晶相,即使在退火过程后也保留。在样品的形态行为中发现了纯和掺杂样品的明确证据。在能量值方面,光学性质的变化揭示了掺杂剂在360 nm波长蓝移位时的贡献。在退火样品上获得的磁性行为揭示了向超级传导应用的过渡态向磁管状态进行磁态。(2024年1月22日收到; 2024年4月18日接受)关键词:含量氧化物,掺杂剂,超导体,纳米材料,辐射1。引言超导性是零电阻的现象,已彻底改变了各种领域,例如能量传输,磁性悬浮和高速计算。为了支持这一点,纳米颗粒聚焦在具有相应较大表面积的各个专业区域。氧化钨(WO₃)纳米颗粒由于其独特的电子和结构特性而引起了极大的关注,作为超导应用的有希望的材料。近年来,研究人员探索了各种合成方法,以增强WO纳米颗粒(包括掺杂和新型制造技术)的超导性能。通过系统地研究WO纳米颗粒的微波辅助合成和掺杂,该研究旨在为各种应用的高级超导材料的开发做出贡献。各种研究的观察结果和结果可能集中在基于氧化物的超导设备的设计和优化上,因此,它将通过理解实用有效的当前当前超导技术来进一步引导。截至日期,具有高表面能量的纳米颗粒涉及广泛的应用。ex:催化,窗户技术,食品工业,化妆品和医疗[1]。尤其是水合的钨氧化物最近聚焦于窗户的发展[2],催化[3],发光[4]和化学,生物和气体传感器[5]。多态性和氧缺陷为各种应用提供了这种材料。此外,用于许多应用,样品相对于尺寸纳米水平的相应物理和化学特性。*通讯作者:kcrbphy@gmail.com https://doi.org/10.15251/djnb.2024.192.641
过去几十年来,微电子行业一直在推动小型化理念的深入人心。更小的设备意味着更快的运行速度、更便携和更紧凑的系统。这种小型化趋势具有感染力,纳米技术和薄膜加工的进步已经蔓延到广泛的技术领域。这些技术进步对一些领域产生了重大影响,包括二极管激光器、光伏电池、热电材料和微机电系统 (MEMS)。这些设备的设计改进主要来自实验和宏观测量,例如整体设备性能。这些设备和材料的微观特性的大多数研究都集中在电气和/或微观结构特性上。目前,许多热问题在很大程度上被忽视,限制了现代设备的性能。因此,这些材料和设备的热性能对于高科技系统的持续发展至关重要。人们对薄膜能量传输机制的了解需求催生了一个新的研究领域,即微尺度传热。微尺度传热只是在必须考虑单个载体或连续模型失效时对热能传递的研究。传热的连续模型经典地是能量守恒定律与热传导的傅立叶定律的结合。类似地,当连续流体力学模型不足以解释某些现象时,就出现了“气体动力学”的研究。微尺度传热领域具有一些惊人的相似之处。相似之处之一是方法论。通常,第一次建模尝试是修改连续模型,以便将微尺度因素考虑在内。更常见且稍微困难的方法是应用玻尔兹曼传输方程。最后,当这两种方法都失败时,通常采用计算详尽的分子动力学方法。下面将更详细地讨论这三种方法和具体应用。图 18.1 演示了电子(金属薄膜中的主要热载体)散射的四种不同机制。所有这些散射机制对于微尺度传热的研究都很重要。块体金属中电子的平均自由程通常在 10 到 30 纳米的数量级上,其中电子晶格散射占主导地位。然而,当薄膜厚度与平均自由程数量级相同时,边界散射就变得很重要。这被称为尺寸效应,因为薄膜的物理尺寸会影响传输特性。薄膜可以使用多种方法并在各种条件下制造。这可能会对薄膜的微观结构产生严重影响,进而影响缺陷和晶界散射。最后,当被超短脉冲加热时,电子系统会变得非常热,以至于电子-电子散射会变得非常明显。因此,微尺度传热需要考虑微观能量载体和各种可能的散射机制。
能量是我们每天依靠的物理科学的重要组成部分。此工作表旨在帮助五年级的学生了解它。学生将首先阅读一段内容丰富的文章,突出了能源的重要性。然后,它们将与相应的能量类型的插图匹配。工作表涵盖了能量的各个方面,包括电势,动力学,热,化学,电气,核等不同来源。根据物理学,能量是做某事的能力,并且具有许多与运动相关的形式。例如,运动中的对象具有动能,而弓形或弹簧等拉紧的设备由于其组成而包含势能。核能来自原子核内的亚原子颗粒。不能创建或破坏能量,但可以改变形式。人们使用能量进行日常活动和工作,例如将存储在煤炭和天然气中的化学能转化为电能。此工作表是向学生传授不同类型的能量及其应用的引人入胜的方式。注意:我已经删除了不必要的内容,并保持文本的原始语言完整。可再生能源是从自然来源衍生出的,这些能源以比消耗更快的速度补充的天然来源。这些来源包括阳光和风,它们不断更新自己。到处都是丰富且可访问的,可再生能源为传统化石燃料提供了许多好处。通过利用可再生能源,我们可以大大减少温室气体的排放并减轻气候危机。从化石燃料到可再生能源的过渡对于可持续的未来至关重要。可再生能源不仅提供清洁能源,还可以降低其使用相关的成本。许多人认为可再生能源是一种尖端的技术,但是利用自然能量的概念已经存在了几个世纪,在古老的习俗中很明显,例如利用风和阳光用于加热,运输和照明。世界正在逐渐向更可持续的能源转移,这是由于解决全球不确定性和改善生活质量的需求所带来的。可再生能源在为基本电器,运输,通信设备和医疗机械的动力供电中起着至关重要的作用,最终增强了人类的福祉。能量传输是通过包括工作在内的各种机制进行的,其中来自移动物体的动能被转移到固定物体中,从而导致运动或状态变化。这种现象强调了能量的动态性质及其在维持其总数的同时在对象之间转换的能力。能量转移:学生能量的教学挑战可能是教学生的复杂主题。要克服这一挑战,教师应开发引人入胜的教材,以帮助学生可视化基本能量转移。使用日常示例和简单的语言可以帮助理解。通过书籍,电影,歌曲或棋盘游戏等各种资源来鼓励问题和探索至关重要。三种形式的能源工作表可以进一步巩固理解。认识到可再生,潜在和化学能量在日常生活中的重要性,包括它们在应对气候变化中的作用,可以使学习更加相关和有意义。